What is a Fire Hydrant? Its Types, Working, Components, and Color Coding

A fire hydrant is a visible connection point placed in defined locations for firefighters to tap into a water supply. All buildings, parking areas, roadsides, mines, industrial areas, etc. must have fire hydrants with a connection to a water service network. They are designed to provide the water required by firefighters instantly to fight and extinguish a fire. Till the 18th century, underground fire hydrants were used. However, from the 19th century onwards, above-ground pillar-type fire hydrants become popular and mostly used. A fire hydrant is basically a pipe with the control of a valve through which water flows from a water main in order to put out a fire.

Purpose and Uses of Fire Hydrants

The primary purpose of fire hydrants is to supply water for suppressing fire. However, they can be used for several secondary purposes like:

  • Line Flushing: Due to their high flow capability and easy operation, fire hydrants can be used to flush main distribution system lines.
  • Testing System: To test the hydraulic capacity of the distribution system, fire hydrants can be used.
  • Other Common uses: Fire hydrants are also frequently used as a water source for commercial construction work, sewer cleaning, street construction, street cleaning, etc.

Working of a Fire Hydrant

Fire hydrants with a variety of valves and connection points are seen in many places. In the event of a fire breakout, firefighters locate the fire hydrants, connect their hoses and then pump a large volume of pressurized water to put out the fire. A special pentagonal wrench is used to remove the valve cover of the hydrant. Then after attaching the hoses, the firefighters open the valve for the water to flow.

READ  What is Inerting? Gases Used for Inerting and Their Selection Criteria

They usually have a connection point to hook up a fire hose and a nut or bolt to turn on which will start the flow. Every fire hydrant is essentially just an attachment to the main water line. Underneath that connects the hydrant valve through a pipe called a riser. However, normal hydrants don’t change the water pressure or flow in any way. They function as valves so firefighters can utilize the already present pressure in the water pipes. While all of this may sound simple the internal mechanics of a fire hydrant are a little more complex and can vary by region.

Types of Fire Hydrants

There are two types of Fire Hydrants; Wet hydrants and Dry hydrants.

Wet Hydrant

Wet hydrants are widely used in places where there is no problem of freezing. In such types of fire hydrant systems, the water in the main supplies the hydrant close to the surface. So, in cold weather conditions, it is susceptible to freezing.

Dry Hydrant

A dry hydrant system stores the water below the ground. The Earth’s temperature is usually higher than the cold environment temperature in cold regions. So, the possibility of freezing can be prevented by this arrangement. When the dry hydrant system is required to be used, firefighters open a valve on top of the hydrant and engage their hose in it. This causes the drain valve to open inside the hydrant. This allows the water to come through which the firefighters use against the fire.

READ  Emergency Shutdown System or ESD System

Difference between Wet barrel Hydrant and Dry barrel Hydrant

The main differences between a wet hydrant and a dry hydrant are mentioned below:

Wet Hydrant or Wet Barrel HydrantDry Hydrant or Dry Barrel Hydrant
Wet Hydrants are used where water-freezing issues are not presentDry barrel hydrants are used in cold regions where the temperature routine drops below water freezing temperature.
In the wet hydrant design, the water is placed abovegroundThe water in the dry barrel design is kept below ground to avoid freezing.
A wet Hydrant is easier to construct and cheap.On the other hand, dry barrel hydrants are costlier and difficult to construct.
Maintenance of wet barrel hydrants is easier due to easy access.Maintenance is comparatively difficult.
Table 1: Wet Barrel Hydrant vs Dry Barrel Hydrant

Components of a Fire Hydrant System

The main components that constitute a fire hydrant system are:

  • Fire Fighting Pumps & Accessories
  • Piping
  • Panels
  • Landing Valves
  • Hoses
  • Couplings
  • Hose Reel
  • Branch Pipes & Nozzles
  • Fire Brigade Connections
  • Wiring & Instrumentations
  • Maintenance Valves

Color Coding of Fire Hydrants

Following NFPA standards, all fire hydrants are color-coded. These colors indicate the expected flow during the operation. Usually, the top caps of the fire hydrants are painted. The following table provides the common colors according to the flow.

READ  What is a Fire Pump? Working, Sizing, and Types of Fire Pumps
Color-CodingFlowMeaning
Light Blue/Blue>1500 GPMVery good flow, suitable for industrial applications.
Green1000-1500 GPMgood for residential purposes
Orange500-999 GPMmarginally adequate
Red<500 GPMLow flow, inadequate
Table 2: NFPA color coding of fire hydrants

Codes and Standards of Fire Hydrants

The codes and standards that are used as guidelines for designing fire hydrant systems are:

  • NFPA 1
  • NFPA 25
  • NFPA 291
  • AWWA
  • A112.21.3M
  • BS EN 14384
  • BS 750
  • DIN 3222
  • DIN EN 14339
  • AS 2419
  • FP-009
  • IS 3844
  • IS 13039

Fire Fighting System Online Courses

To learn more details about fire fighting systems, their operation, application, etc you can join the following online in-depth video courses:

Anup Kumar Dey

I am a Mechanical Engineer turned into a Piping Engineer. Currently, I work in a reputed MNC as a Senior Piping Stress Engineer. I am very much passionate about blogging and always tried to do unique things. This website is my first venture into the world of blogging with the aim of connecting with other piping engineers around the world.

3 thoughts on “What is a Fire Hydrant? Its Types, Working, Components, and Color Coding

  1. HI
    I hope you are doing well
    My name is krunal daslaniya, I live in the UK and I am pursuing my Master’s in system engineering.
    I read your blogs and it’s a piece of Amazing information but I want information about Fire Hydrant architecture how to the drow.
    1: describe the approach taken to developing the architecture, including any systems
    engineering methods used,
    2: include a schematic diagram of the system architecture selected, including sub-systems and
    elements and interfaces.

    Below the requirement is completed. (I am just information about the Architecture.)
    A new power generation factory (power plant) is under construction and your group is responsible to develop a dedicated fire hydrant system to allow power plant fire engines to be re-filled with water in an emergency. There are two independent supplies of mains water into the power plant, one from the north and one from the south. The probability that either of these supplies are unavailable or fails on demand is 1 x10-3. Each has a maximum water supply flow rate of 2500 litres/min but will need a boost pump to maintain a consistent supply pressure.
    Individual hydrants (valved connections that a fire engine can connect to in order to re-fill with water) need to be located at various points in the power plant. The power plant fire engines each have a capacity of 8000 litres of water and in an emergency need to be re-filled with water in 2 minutes, the capability to re-fill at this rate needs to be maintained for at least two hours.
    If there is an accident then the probability of the hydrant system being unable to meet the requirement above must be less than 1 x 10-6. The power plant will have an electrical supply from the national grid; the probability that it is unavailable if required is 2 x10-3. The power plant has a back-up electrical supply, the probability of this failing to start and run for the required time is 7 x10-4. Unfortunately, it only has the capacity to run small loads like motorised valves or instrumentation, and not high loads like pumps.
    The customer would like some element of health or availability monitoring in the system but their requirements for this are not very specific and they would welcome proposals. They would also like to be able to undertake maintenance on key components in the system whilst it is still fully available for use if required. They are also concerned about common cause failures and would like the requirements and system architecture to take account of this.
    I am waiting for your response.

    Regards
    krunal daslaniya

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent Posts