Recent Posts

Oxidation State of Nickel: Its Meaning, Significance, Parameters, and Applications

Nickel, a versatile and widely used transition metal, is known for its durability and excellent corrosion resistance. However, under certain conditions, nickel can undergo oxidation, leading to changes in its chemical and physical properties. In this article, we delve into the world of nickel oxidation, exploring its mechanisms, effects on other compounds, and applications.

What is Oxidation?

Oxidation is a chemical process that involves the loss of electrons by an atom, molecule, or ion. It occurs when a substance interacts with an oxidizing agent, which is typically a molecule or compound that readily accepts electrons. During oxidation, the oxidizing agent gains electrons while the substance being oxidized loses electrons.

Electrons are negatively charged particles that orbit around the nucleus of an atom. They play a crucial role in chemical reactions, as they determine the bonding and reactivity of atoms. When an atom loses electrons, it becomes positively charged because it now has more protons than electrons. This process is referred to as oxidation.

Oxidation reactions are commonly associated with the presence of oxygen, as oxygen is a highly effective oxidizing agent. However, oxidation can also occur without oxygen being directly involved. Other substances, such as halogens (e.g., chlorine, bromine), can act as oxidizing agents as well. With respect to Nickel oxidation, it is a measure of the added oxygen to the compound.

What is Nickel Oxidation?

Nickel oxidation refers to the process in which nickel atoms lose electrons and combine with oxygen atoms, resulting in the formation of various nickel oxide compounds. This transformative phenomenon alters the chemical behavior and physical properties of nickel.

Oxidation State of Nickel

The oxidation state of nickel is a measure of the number of electrons it gains or loses during oxidation. Nickel can exist in different oxidation states, ranging from -1 to +4 even though 0 (neutral) +2 (bivalent), and +3 (trivalent) are the most common oxidation states of nickel which exhibit distinctive chemical characteristics. In the +2 oxidation state, nickel loses two electrons (Example NiO), while in the +3 oxidation state, it loses three electrons (Example NiCl2). These oxidation states determine the charge on the nickel ion and profoundly influence its chemical reactivity.

Nickel Oxidation Number

The oxidation number of nickel is determined by the sum of the oxidation states of its constituent atoms. In the case of nickel, it is commonly represented as Ni2+ or Ni3+. These oxidation numbers indicate the charge on the nickel ion after losing or gaining electrons. For example, in nickel(II) oxide (NiO), nickel has an oxidation number of +2.

Nickel Oxidation Mechanism

The oxidation of nickel involves the transfer of electrons from the nickel atoms to oxygen. This process can occur through various mechanisms, such as direct reaction with oxygen, reaction with oxygen-containing compounds, or electrochemical oxidation. Factors like temperature, humidity, and the presence of impurities can influence the rate and extent of nickel oxidation.

One common mechanism is a direct reaction with oxygen, where nickel atoms react with oxygen molecules to form nickel oxide. Another mechanism involves the reaction of nickel with oxygen-containing compounds, such as water or carbon dioxide. Electrochemical oxidation, occurring during electrochemical reactions, is also significant, as in the case of nickel-plating processes.

Effects of Nickel Oxidation States on Other Compounds

The oxidation state of nickel plays a crucial role in its reactivity with other compounds. For instance, Nickel in the +2 oxidation state tends to form stable complexes with ligands, making it valuable in catalytic reactions and industrial processes. These complexes find applications in hydrogenation, polymerization, and organic synthesis. On the other hand, nickel in the +3 oxidation state exhibits strong oxidizing properties, enabling its participation in redox reactions and making it useful in various chemical processes.

Factors Affecting Nickel Oxidation States

Several factors can influence the oxidation states of nickel. These factors can either promote or hinder the oxidation of nickel and determine the stability and reactivity of different nickel oxidation states. Here are some key factors that affect nickel oxidation states:

Oxygen Availability:

The availability of oxygen is a significant factor in nickel oxidation. In the presence of oxygen, nickel can readily undergo oxidation reactions, resulting in the formation of nickel oxide compounds. Higher oxygen concentrations generally facilitate the oxidation of nickel.

Temperature:

Temperature plays a crucial role in nickel oxidation. Higher temperatures generally increase the rate of oxidation by providing the necessary energy for oxidation reactions to occur. Elevated temperatures can enhance the mobility of atoms and facilitate electron transfer, promoting the oxidation of nickel.

Humidity:

The presence of moisture or humidity can impact the oxidation of nickel. Moisture in the air can lead to the formation of a thin layer of water on the surface of nickel, which can act as a medium for oxidation reactions. Increased humidity levels can accelerate the oxidation process.

pH Level:

The pH level of the surrounding environment can affect nickel oxidation. In certain cases, acidic or alkaline conditions can promote the formation of specific nickel oxide compounds. The pH level influences the solubility and stability of different oxidation states of nickel, thereby affecting their propensity for oxidation.

Presence of Impurities:

The presence of impurities or other elements can significantly impact nickel oxidation. Some impurities can act as catalysts or promoters, facilitating the oxidation process. Conversely, certain elements may inhibit or retard the oxidation of nickel by forming protective surface layers or altering the electron transfer dynamics.

Surface Area and Reactivity:

The surface area of the nickel material can affect its oxidation. The higher surface area allows for more extensive interaction with the oxidizing agents, facilitating faster oxidation. Additionally, the reactivity of the nickel material, which can be influenced by its crystalline structure, grain size, and defects, can impact the ease of oxidation.

Time:

The duration of exposure to oxidizing conditions also affects nickel oxidation. Prolonged exposure to an oxidizing environment allows for more opportunities for oxidation reactions to occur, leading to a higher degree of oxidation.

Presence of Reducing Agents:

The presence of reducing agents, which have a tendency to donate electrons, can hinder nickel oxidation. Reducing agents can counteract the oxidizing properties of the environment and potentially stabilize the lower oxidation states of nickel.

It is essential to consider these factors when studying nickel oxidation as they can influence the extent, kinetics, and specific oxidation states observed in various conditions. By understanding these factors, researchers can better control and manipulate the oxidation process for specific applications or prevent undesired oxidation in certain contexts.

Applications of Nickel Oxidation

Nickel oxidation finds applications in various industries and fields. In the field of catalysis, nickel catalysts with different oxidation states are employed to facilitate chemical reactions. These catalysts find use in petroleum refining, hydrogenation processes, and organic synthesis. Nickel oxide coatings are utilized in batteries, fuel cells, and supercapacitors due to their high electrochemical activity. Additionally, nickel oxide compounds are essential components in the manufacturing of ceramic pigments, magnetic materials, and semiconductors, contributing to advancements in technology and materials science.

In conclusion, nickel oxidation is a fascinating process that significantly impacts the chemical and physical properties of this versatile metal. Understanding the oxidation mechanisms, effects on other compounds, and diverse applications of nickel oxidation provides valuable insights for scientists, engineers, and industries utilizing nickel in various processes. Continued research in this field will undoubtedly uncover new avenues for harnessing the potential of nickel oxidation in innovative technologies and materials.

What are Concrete Anchors? Their Applications, Materials, and Types

When it comes to construction projects, whether it’s a towering skyscraper, oil and gas facility, chemical and petrochemical complex, a residential building, or a simple home renovation, ensuring the strength and stability of the structure is paramount. One crucial element that contributes to the overall integrity and reliability of concrete structures is the use of anchors. Anchors play a vital role in connecting various components, reinforcing structural elements, and providing stability in concrete applications. In this article, we will delve into the world of anchors in concrete, exploring their types, functions, and the importance of proper installation techniques.

What are Concrete Anchors and How Do They Work?

Anchors, in the context of concrete construction, are devices or systems designed to attach or connect elements to a concrete surface. They are typically embedded into the concrete to provide a secure and lasting connection. Concrete anchors serve as a reliable attachment to secure objects in place. Anchors can distribute loads, resist forces, and prevent movement or failure of structural components. By creating a bond between the concrete and the anchor, they enhance the overall strength and stability of the structure.

A concrete anchor works by creating a secure connection between a concrete surface and another object or structural element. It prevents movement, rotation, or detachment of the attached component, enhancing the overall strength and stability of the structure. The working mechanism of a concrete anchor depends on its type, but the fundamental principle is to generate a bond that distributes and resists applied loads. The concrete anchors work in such a way that they provide a means for securing objects without damaging the concrete itself. They are found in various shapes and sizes, ensuring that for any project requirements, there is a suitable concrete anchor available. Fig. 1 below shows a typical example of concrete anchors.

Typical Example showing Applications of Concrete Anchors
Fig. 1: Typical Example showing Applications of Concrete Anchors

Types of Concrete Anchors

There are various types of concrete anchors used in the construction industry to cater to different needs. Broadly, the following concrete anchor types are widely used for industrial applications:

  • Sleeve Anchors
  • Wedge Anchors
  • Acoustical Wedge Anchors
  • Drop in Anchors
  • Double Expansion Shield Anchors
  • Lag Shield Expansion Anchors
  • Hammer Drive Pin Anchors
  • Split Drive Anchor
  • Threaded Rod Anchor
  • Strike Anchor
  • Plastic Toggle Anchors
  • Lag Anchor
  • Tapcon Concrete Anchor
  • Kaptoggle Hollow Wall Anchors
  • Machine Screw Angles Anchors
  • Masonry Screws
  • Sammys Screws
  • Toggle Wing Hollow Wall Anchors

Sleeve Anchors:

Sleeve anchors are versatile anchors suitable for a wide range of applications. They consist of a threaded bolt with a cone-shaped expander sleeve and a nut. When the anchor is inserted into a pre-drilled hole in the concrete, tightening the nut pulls the cone-shaped sleeve against the walls of the hole, causing it to expand and create a secure connection. Sleeve concrete anchors are easy to install and provide a durable and reliable solution.

Wedge Anchors:

Wedge anchors are designed for heavy-duty applications that require high load capacity. They consist of a threaded bolt with a wedge-shaped expansion clip at the bottom and a nut and washer. During installation, the anchor is inserted into a pre-drilled hole, and as the nut is tightened, the wedge-shaped clip expands, creating a secure grip between the anchor and the concrete. Due to their solid, lasting hold on even the most abrasive surfaces, Wedge anchors are extremely safe for use in permanent applications requiring incredible strength and long-lasting resistance.

Acoustical Wedge Anchors:

Acoustical wedge anchors are specifically designed for attaching acoustic panels and other similar materials to concrete surfaces. They feature a specially designed wedge-shaped clip that provides a strong grip and helps minimize vibration transmission.

Drop-in Anchors:

Drop-in anchors are internally threaded cylindrical anchors. They are placed into a pre-drilled hole in the concrete and then a threaded rod or bolt is inserted into the anchor. As the bolt is tightened, it expands the anchor and creates a secure connection.

Double Expansion Shield Anchors:

Double expansion shield anchors consist of a tubular-shaped shield with two expansion cones and a machine screw. When the anchor is inserted into a pre-drilled hole and the screw is tightened, the expansion cones expand radially, providing a secure hold within the concrete.

Lag Shield Expansion Anchors:

Lag shield expansion anchors are used to attach wood or metal components to concrete. They consist of a short, hollow cylindrical shield and a lag screw. The shield is inserted into a pre-drilled hole, and when the lag screw is driven into the shield, it expands and forms a tight grip within the concrete.

Hammer Drive Pin Anchors:

Hammer drive pin anchors, also known as hammer drive anchors or nail-in anchors, are simple and quick to install. They consist of a metal pin or nail with a nail head and a preassembled expansion sleeve. The pin is hammered into a pre-drilled hole, and as it goes in, the sleeve expands and secures the anchor in place.

Split Drive Anchor:

Split drive anchors feature a split cylindrical body with a wedge-shaped end and a lip. The anchor is inserted into a pre-drilled hole, and as a nail or screw is driven into the anchor, it causes the split body to expand, providing a secure hold in the concrete.

Threaded Rod Anchor:

Threaded rod anchors, as the name suggests, are used to attach threaded rods to concrete surfaces. They consist of a threaded sleeve or a nut with an internally threaded section that is embedded into the concrete. The threaded rod is then screwed into the anchor to create a secure connection.

Strike Anchor:

Strike anchors are heavy-duty anchors that provide excellent holding strength. They feature a cylindrical body with a cone-shaped end and a metal pin. The anchor is inserted into a pre-drilled hole, and a hammer or striking tool is used to drive the pin into the anchor, causing the cone-shaped end to expand and create a strong connection.

Plastic Toggle Anchor:

Plastic toggle anchors, also known as butterfly anchors, are used for light-duty applications. They consist of a plastic sleeve with two spring-loaded wings. When the anchor is inserted into a pre-drilled hole and the screw is tightened, the wings open behind the wall, providing stability and holding the anchor in place.

Lag Anchor:

Lag anchors are used for attaching wood or metal components to concrete surfaces. They consist of a lag screw threaded into a shield or an anchor body. The shield is inserted into a pre-drilled hole, and as the lag screw is tightened, it pulls the shield against the walls of the hole, creating a secure connection.

Tapcon Concrete Anchor:

Tapcon concrete anchors are specifically designed for fastening materials to concrete, brick, or block. They consist of a hardened steel screw with threads specially designed for concrete. These anchors are self-tapping, meaning they can be directly drilled into the material without the need for pre-drilling. As the screw is driven into the concrete, it creates threads and forms a strong bond.

Kaptoggle Hollow Wall Anchors:

Kaptoggle hollow wall anchors are primarily used for attaching objects to hollow walls, such as drywall. They consist of a spring-loaded toggle mechanism that expands behind the wall when the screw is inserted. The toggle provides stability and prevents the anchor from pulling out of the wall.

Machine Screw Angle Anchors:

Machine screw angle anchors, also known as Zamac anchors, are versatile anchors suitable for various materials, including concrete. They consist of a zinc alloy anchor body with a pre-assembled screw. The anchor is inserted into a pre-drilled hole, and as the screw is tightened, it expands the anchor, creating a secure hold.

Masonry Screws:

Masonry screws, often made of hardened steel, are designed for fastening materials to concrete, brick, or block. They feature a threaded shank and a hexagonal or Phillips’s head for easy installation using a screwdriver or drill. These screws are self-tapping and create their own threads as they are driven into the masonry.

Sammys Screws:

Sammy’s screws, also known as vertical anchoring systems, are used for attaching objects to concrete or steel surfaces. They consist of a threaded screw with a pointed end and a pre-assembled anchor body. The screw is driven through the object and into the anchor, which expands behind the surface, providing a secure connection.

Toggle Wing Hollow Wall Anchors:

Toggle wing hollow wall anchors are specifically designed for hollow walls, such as drywall. They consist of a spring-loaded toggle mechanism attached to a threaded bolt. When the anchor is inserted into the wall and the bolt is tightened, the wings on the toggle expand, gripping the backside of the wall and providing stability.

Each of these concrete anchor types offers unique features and advantages, allowing for a wide range of applications and ensuring secure and reliable connections between various materials and concrete surfaces. It is important to select the appropriate anchor type based on the specific requirements of the project to ensure optimal performance.

Materials for Concrete Anchors

Concrete anchors are available in a variety of materials, each chosen based on the specific application requirements and environmental conditions. The common materials used for concrete anchors include:

  • Steel: Steel is one of the most common materials for concrete anchors due to its strength, durability, and resistance to corrosion. Steel anchors can withstand heavy loads and provide long-lasting performance. They are often made of carbon steel, stainless steel, or coated steel to enhance corrosion resistance.
  • Zinc Alloy: Zinc alloy anchors, commonly known as Zamac anchors, are widely used for light to medium-duty applications. They offer good corrosion resistance and are cost-effective. Zinc alloy anchors are often used in drywall, masonry, and other non-structural applications.
  • Brass: Brass anchors are known for their corrosion resistance and aesthetic appeal. They are commonly used in applications where appearance is important, such as decorative fixtures or architectural elements. Brass anchors may be preferred in indoor or low-corrosion environments.
  • Nylon: Nylon anchors are lightweight, non-metallic anchors that offer excellent resistance to corrosion, chemicals, and electrical conductivity. They are commonly used in applications where insulation or non-conductive properties are required, such as electrical installations or areas with potential contact with water or chemicals.
  • Plastic: Plastic anchors, typically made of high-density polyethylene (HDPE) or other durable plastics, are lightweight and resistant to corrosion. They are commonly used for light-duty applications or in areas where electrical insulation is necessary. Plastic anchors are often used in drywall, lightweight fixtures, or low-load applications.
  • Epoxy: Epoxy anchors utilize an adhesive system made of epoxy resin. The epoxy material provides exceptional strength, chemical resistance, and adhesion to both the anchor and the concrete. Epoxy anchors are commonly used in high-load or critical applications where a strong bond is required, such as structural connections or heavy equipment installations.

It’s important to consider the material compatibility with the concrete and the specific environmental conditions in which the anchor will be installed. Proper material selection ensures the anchor’s longevity, reliability, and resistance to corrosion or degradation over time.

Importance of Proper Anchor Installation

Proper anchor installation is critical to ensure the effectiveness and reliability of the anchoring system. Here are a few key considerations for installation:

  • Load Capacity: Anchors must be selected based on the expected load requirements. It is essential to choose anchors that can withstand the anticipated loads to prevent failures or structural compromises.
  • Concrete Condition: The condition and quality of the concrete play a significant role in anchor performance. Factors such as compressive strength, age, moisture content, and the presence of cracks can affect the anchor’s ability to form a secure bond. It is crucial to assess the concrete condition and address any issues before anchor installation.
  • Correct Hole Preparation: The size and depth of the hole for anchor installation must be accurate. It is important to follow manufacturer guidelines and industry standards for hole diameter, depth, and cleanliness to ensure optimal anchoring performance.
  • Installation Techniques: Anchors should be installed using the appropriate tools and techniques. This includes ensuring proper torque or tension, avoiding overtightening, and following any specific installation procedures provided by the anchor manufacturer.

Applications of Anchors in Concrete

Anchors find extensive use in a wide range of concrete applications:

  • Structural Connections: Anchors play a crucial role in connecting structural components such as columns, beams, and walls, providing stability and load transfer.
  • Façade and Cladding Systems: Anchors are used to attach cladding systems to the concrete structure, ensuring their secure attachment and resistance to wind loads and other external forces.
  • Mechanical and Electrical Installations: Anchors are essential for securing mechanical equipment, HVAC systems, electrical panels, and piping to concrete surfaces.
  • Safety Systems: Anchors are utilized in the installation of safety equipment, such as guardrails, handrails, and lifeline systems, ensuring the protection of workers and preventing accidents.
  • Interior Fixtures: Anchors are commonly employed in the installation of fixtures like shelves, cabinets, and wall-mounted TVs, providing stability and preventing accidental tipping or falling.
  • Concrete Reinforcement: In certain cases, anchors are used to reinforce concrete structures by connecting additional steel elements or reinforcing bars, enhancing the overall strength and durability.

Maintenance and Inspection

Regular maintenance and inspection of anchors are crucial to ensure their continued effectiveness and reliability. Periodic assessments should be conducted to check for signs of corrosion, degradation, or loosening. If any issues are identified, appropriate actions such as anchor replacement or repair should be taken promptly to maintain the structural integrity of the concrete.

Conclusions

Anchors play an indispensable role in concrete construction, contributing to the strength, stability, and reliability of structures. Whether it’s for connecting structural components, attaching fixtures, or reinforcing concrete elements, the proper selection and installation of anchors are crucial for ensuring optimal performance. By understanding the different types of anchors, following recommended installation techniques, and conducting regular maintenance, builders, and engineers can create concrete structures that stand the test of time, providing safety and durability for years to come.

What is Process Piping? Its Definition, Materials, Codes, Applications, and Differences with Power Piping and Plumbing

Process piping plays a crucial role in various industries, enabling the safe and efficient transportation of fluids such as liquids, gases, and slurries. From chemical plants and refineries to pharmaceutical facilities and food processing units, process piping systems form the backbone of numerous industrial operations. This article provides a comprehensive overview of process piping, its components, materials, installation techniques, and maintenance practices, highlighting its significance in industrial fluid transportation.

What is Process Piping?

Process piping refers to a network of interconnected pipes, fittings, valves, and other components used to transport fluids within an industrial facility. These systems facilitate the movement of various substances, including water, chemicals, petroleum products, gases, steam, air, refrigerants, and many more. Process piping is designed to handle specific fluid types and meet stringent safety and performance standards.

In general, from an engineering perspective, a process piping system can be defined as a system of piping components designed following the guidelines mentioned in the ASME B31.3 code. Broadly, any piping system designed based on the ASME B31.3 code and used for transporting fluids under various temperatures, pressure, and environmental conditions is termed process piping. On the other hand, the piping system designed based on the ASME B31.1 code is termed power piping.

ASME B31.3 defines process piping as the piping used to carry substances in petroleum refineries; chemical, pharmaceutical, textile, paper, ore processing, semiconductor, and cryogenic plants; onshore and offshore petroleum and natural gas production facilities; food and beverage processing facilities; and related processing plants and terminals. So, as you can find process piping has a large number of applications in industrial facilities.

Components of Process Piping

Process Piping consists of a large variety of piping components. Some of the most widely used piping components for process piping are:

  • Pipes: The primary element of any process piping system, pipes are available in different materials such as carbon steel, stainless steel, copper, and plastic. The choice of material depends on factors such as fluid properties, temperature, pressure, and corrosion resistance requirements.
  • Fittings: Fittings are used to connect pipes, change direction, and control fluid flow. Common types include elbows, tees, reducers, and couplings. Like pipes, fittings are available in various materials and configurations to suit specific needs. More details about pipe fittings are provided here.
  • Valves: Valves regulate the flow and control the pressure of fluids in process piping systems. They can be manual or automated and are crucial for process control and safety. Common valve types include gate valves, globe valves, ball valves, and check valves.
  • Flanges: Flanges provide a means for connecting pipes and equipment, forming a secure joint. They are available in different standards, sizes, and pressure ratings, ensuring compatibility and leak-free connections.

Note that various equipment like pressure vessel, pumps, compressors, turbines, heat exchangers, etc forms the complete system to operate the facility successfully but they are not part of process piping. They are used in process piping to complete the process piping system for performing the function of the system. A typical example of a process piping system is shown in the image below:

Typical Process Piping System
Typical Process Piping System

Materials for Process Piping

The choice of materials for process piping depends on factors such as fluid characteristics, temperature, pressure, and the environment. Common materials include:

  • Carbon Steel: Suitable for general-purpose applications, carbon steel offers good strength and affordability but may be prone to corrosion in certain environments.
  • Stainless Steel: Known for its excellent corrosion resistance, stainless steel is widely used in industries where hygiene and durability are critical, such as pharmaceuticals and food processing.
  • Alloy Steel: Alloy steel pipes are made by combining carbon steel with other elements, such as chromium, molybdenum, and nickel, to enhance their mechanical properties and corrosion resistance. In the chemical and petrochemical industries where applications involve high temperature and pressure, alloy steel materials are suitable.
  • Copper: Frequently used for water and gas distribution, copper is valued for its corrosion resistance, thermal conductivity, and ease of installation. Click here to learn other non-ferrous piping materials
  • Plastic: Materials like PVC, CPVC, and PTFE are used for non-corrosive applications, offering benefits such as chemical resistance, lightweight, and ease of installation.

Click here to learn process piping materials in detail

Codes and Standards for Process Piping

Even though ASME B31.3 is the main governing code for process piping, various other codes and standards are referred to design different components of the piping system. Table 326.1 of ASME B31.3 lists all such codes and standards. The same table is reproduced below for reference.

Installation Techniques and Standards

Process piping installation requires adherence to specific guidelines and industry standards to ensure safety and reliability. Proper installation techniques involve activities like pipe routing, cutting, threading, welding, and pressure testing. Standards such as ASME B31.3, ASME B31.1, and API 570 outline best practices for the design, fabrication, inspection, and testing of process piping systems.

Maintenance and Safety Considerations

Regular maintenance is crucial for the optimal performance and longevity of process piping systems. This includes inspection for leaks, corrosion, and mechanical damage, as well as cleaning and periodic replacement of components. Safety considerations involve implementing appropriate measures to prevent leaks, spills, and accidents, including the use of safety barriers, pressure relief devices, and emergency shutdown systems.

Process Piping vs Power Piping: Differences between Power Piping and Process Piping

The following table provides the key differences between Process piping and Power Piping.

AspectProcess PipingPower Piping
PurposeTransporting fluids (liquids, gases, slurries)Transporting steam, water, and other utilities
Fluid TypeWide range of fluids (chemicals, petroleum, etc.)Limited to steam, water, and other utilities
Pressure RatingLower pressure ratingsHigher pressure ratings
Material SelectionWide range of materials (carbon steel, stainless steel, etc.)Specific materials (carbon steel, alloy steel, etc.) for high-temperature and high-pressure applications
Code StandardsASME B31.3 (Process Piping Code)ASME B31.1 (Power Piping Code)
System DesignEmphasizes process control and fluid movementEmphasizes energy transfer and power generation
Safety ConsiderationsPrimarily focuses on fluid containment and chemical compatibilityFocuses on pressure control, thermal expansion, and high-temperature operation
InspectionInspected for leaks, corrosion, and mechanical damageInspected for pressure integrity and weld quality
Industry ApplicationsChemical plants, refineries, pharmaceuticals, food processing, etc.Power plants, utilities, therm
Table 1: Process Piping vs Power Piping; Main differences between Process Piping and Power Piping

It’s important to note that while there are distinct differences between process piping and power piping, there may be some overlap in certain applications, especially in facilities that have both process and power systems. Therefore, adherence to appropriate codes and standards is crucial to ensure the safe and efficient operation of piping systems in each specific context.

Differences between Process Piping and Plumbing: Plumbing vs Process Piping

Here’s a tabular format outlining the major differences between process piping and plumbing:

AspectProcess PipingPlumbing
PurposeTransporting fluids (liquids, gases, slurries)Supplying and distributing water, gas, and sewage
Fluid TypeWide range of fluids (chemicals, petroleum, etc.)Water, gas, sewage
Pressure RatingVaries based on application and industryGenerally lower pressure ratings
Material SelectionWide range of materials (carbon steel, stainless steel, etc.)Commonly uses copper, PVC, PEX, and other plumbing-specific materials
Code StandardsASME B31.3 (Process Piping Code) or specific industry standardsLocal plumbing codes and regulations
System DesignEmphasizes process control and fluid movementEmphasizes water supply, drainage, and fixture connections
Safety ConsiderationsFocuses on containment, chemical compatibility, and industrial safety measuresFocuses on health and sanitation, backflow prevention, and fixture functionality
InstallationOften involves larger pipe sizes and complex layoutsInvolves smaller pipe sizes and simpler layouts
Fixtures and EquipmentPrimarily focused on industrial equipment and machineryFocuses on sinks, faucets, toilets, showers, and other household fixtures
Licensing and CertificationRequires specialized training and certifications for working in industrial settingsRequires specific plumbing licenses and certifications for compliance with local regulations
Table 2: Process Piping vs Plumbing

Conclusions

Process piping serves as the lifeline of industrial fluid transportation, enabling the efficient movement of liquids, gases, and slurries in diverse industries. Understanding the key components, materials, installation techniques, and maintenance practices associated with process piping is essential for ensuring the safe and reliable operation of industrial facilities. By selecting the appropriate materials, following industry standards, and conducting regular maintenance, companies can optimize the performance of their process piping systems while minimizing the risk of leaks, failures, and accidents.

With advancements in technology and the increasing complexity of industrial processes, process piping continues to evolve. New materials, such as composite pipes and advanced alloys, are being introduced to improve performance and reduce costs. Innovative installation techniques, such as prefabrication and modular construction, are gaining popularity for their efficiency and time-saving benefits.

Moreover, the integration of automation and control systems into process piping allows for real-time monitoring and remote control, enhancing safety and process efficiency. These advancements enable companies to improve their productivity, reduce downtime, and meet stringent regulatory requirements.

In conclusion, process piping is a critical component of industrial fluid transportation systems. It enables the safe and efficient movement of fluids within industrial facilities, serving as the backbone of various industries. By understanding the key components, materials, installation techniques, and maintenance practices associated with process piping, companies can ensure the reliable operation of their systems, optimize productivity, and enhance safety. Embracing technological advancements and adhering to industry standards will contribute to the continuous improvement of process piping systems, supporting the growth and success of industrial operations.

Heat Exchanger Fouling Factor: Its Significance and Calculation

Heat exchangers are vital components in numerous industrial applications, facilitating efficient heat transfer between two fluids. However, over time, the accumulation of unwanted deposits on heat exchanger surfaces, known as fouling, can significantly impact their performance. To evaluate and address the impact of fouling on heat exchanger efficiency, engineers and researchers rely on a crucial parameter called the fouling factor. In this article, we delve into the concept of the heat exchanger fouling factor, its significance, and the methods employed to calculate it accurately.

What is Heat Exchanger Fouling Factor?

The heat exchanger fouling factor represents the resistance posed by fouling deposits to the heat transfer process. It quantifies the decrease in heat transfer efficiency caused by fouling and is expressed as a thermal resistance value (m²·K/W). The higher the fouling factor, the more significant the impact of fouling on heat transfer performance.

Significance of the Heat Exchanger Fouling Factor

The fouling factor plays a crucial role in several aspects of heat exchanger design, operation, and maintenance:

Performance Evaluation:

By quantifying the extent of fouling, the fouling factor allows engineers to assess the degradation in heat exchanger performance. It helps identify the need for cleaning or maintenance activities and enables comparisons between different heat exchangers or operating conditions.

Energy Efficiency Analysis:

The fouling factor directly influences the energy consumption of a heat exchanger. Higher fouling factors indicate increased resistance to heat transfer, leading to higher energy requirements for maintaining desired process temperatures. By monitoring and controlling the fouling factor, energy efficiency can be optimized.

Equipment Sizing:

The fouling factor is considered during the design phase of a heat exchanger. It helps determine appropriate surface areas, fluid velocities, and other design parameters to account for the potential fouling impact. Proper sizing ensures the heat exchanger can handle anticipated fouling rates while maintaining desired performance.

Maintenance Planning:

By tracking the fouling factor over time, maintenance intervals and cleaning schedules can be established. Regular monitoring allows for proactive maintenance, minimizing the risk of equipment failure, optimizing performance, and reducing downtime.

Calculating the Heat Exchanger Fouling Factor

The fouling factor can be determined using various methods, depending on the type of fouling and available data:

LMTD (Log Mean Temperature Difference) Correction Method:

This method involves comparing the actual heat transfer area to the clean (initial) heat transfer area. By considering the reduction in effective area due to fouling, the fouling factor can be calculated.

ε-NTU (Effectiveness-Number of Transfer Units) Method:

Primarily used for analyzing shell-and-tube heat exchangers, this method utilizes the concept of heat exchanger effectiveness. The fouling factor is calculated by incorporating the fouling resistance into the overall heat transfer analysis.

Monitoring and Empirical Data:

In some cases, the fouling factor can be estimated based on empirical data obtained from similar systems or through continuous monitoring of fouling rates and performance degradation over time.

Factors Affecting the Heat Exchanger Fouling Factor

Several factors influence the magnitude of the fouling factor:

Fluid Composition:

The properties of the fluids being processed, including temperature, pH, chemical composition, and suspended solids, can significantly impact fouling rates.

Fluid Velocity:

Higher fluid velocities can help mitigate fouling by preventing deposition and promoting self-cleaning mechanisms. However, excessively high velocities can also cause erosion or increase pumping costs.

Operating Time:

Fouling tends to increase with longer operation times due to the gradual deposition of contaminants on heat exchanger surfaces. Therefore, the fouling factor may increase over time if proper maintenance and cleaning are not performed.

Temperature and Pressure:

Higher temperatures and pressures can accelerate fouling rates, especially for processes involving scaling or chemical reactions. Understanding the thermal and hydraulic conditions is crucial in assessing the fouling factor accurately.

Surface Roughness and Material Selection:

The roughness of heat exchanger surfaces can influence fouling tendencies. Smoother surfaces typically exhibit lower fouling rates. Additionally, material selection plays a vital role in minimizing fouling. Choosing materials resistant to corrosion and fouling can help mitigate the impact of deposits.

Fluid Treatment and Pretreatment:

Employing appropriate water treatment methods, such as filtration, softening, or the addition of chemical inhibitors, can reduce fouling tendencies and subsequently lower the fouling factor.

Heat Exchanger Fouling Factor Formula

Mathematically, the fouling factor for the heat exchanger (Rd) is represented as

Rd = 1 / Ud – 1 / U

where

  • Rd = fouling factor or unit thermal resistance of deposit (m2K/W)
  • Ud = overall heat transfer coefficient of heat exchanger after fouling (W/m2K)
  • U = overall heat transfer coefficient of clean heat exchanger (W/m2K)

Typical Heat Exchanger Fouling Factor Values

The following table provides some of the typical heat exchangers fouling factor values:

SubstanceFouling Factor (m2K/W)
Fuel Oil0.0009
Alcohol Vapor0.00009
Boiler Feed Water0.0002
Steam0.00009
Seawater0.0002 to 0.00009
Industrial Air0.0004
Refrigerating Liquid0.0002
Quenching Oil0.0007
Table 1: Heat Exchanger Fouling Factor Table

When performing heat transfer calculations, caution is exercised to select proper fouling factors as in some situations fouling resistances dominate the thermal design of the heat exchanger. General practice is to use a large fouling factor as a safety margin to cover uncertainties in fluid properties. However, a large fouling factor may result in an oversized heat exchanger than required. Many experience-based tabulations of heat exchanger fouling factors are available to get typical fouling factors such as TEMA Table RGP-T-2.4.

Conclusions

The heat exchanger fouling factor serves as a key parameter in evaluating the impact of fouling on heat transfer efficiency. By understanding its significance and employing accurate calculation methods, engineers can make informed decisions regarding heat exchanger design, operation, and maintenance. Regular monitoring of the fouling factor, along with appropriate cleaning and maintenance practices, enables optimization of energy efficiency, reduction of operational costs, and avoidance of equipment failures. By addressing heat exchanger fouling issues proactively and implementing effective strategies, industries can ensure optimal heat exchanger performance, prolong equipment lifespan, and contribute to sustainable and cost-effective operations.

Heat Exchanger Fouling or Scaling: Its Causes, Consequences, and Mitigation

Heat exchangers play a critical role in various industrial processes, including power generation, chemical production, HVAC systems, Oil and gas industries, and many more. These devices facilitate efficient heat transfer between two fluids, ensuring optimal performance and energy efficiency. However, over time, heat exchangers are prone to a common problem known as fouling. Fouling refers to the accumulation of unwanted deposits or contaminants on the heat exchanger surfaces, leading to decreased efficiency, increased energy consumption, and potential equipment failures. In this article, we delve into the intricacies of heat exchanger fouling, exploring its causes, consequences, and mitigation strategies.

Understanding Heat Exchanger Fouling

Heat exchanger fouling occurs when unwanted substances deposit and adhere to the heat transfer surfaces, inhibiting heat exchange between the two fluids. These deposits can be categorized into various types, including scales, sediment, corrosion products, organic matter, and biological growth. The formation of fouling layers is influenced by factors such as fluid composition, temperature, pressure, velocity, and residence time.

Causes of Heat Exchanger Fouling/ Types of Heat Exchanger Fouling

Several factors contribute to the formation of fouling deposits in heat exchangers. Some common causes include:

Scaling:

Scale deposits result from the precipitation and crystallization of minerals, such as calcium carbonate and calcium sulfate, present in the fluid. Scaling is particularly common in processes involving hard water or high-temperature applications.

Sedimentation:

Particles suspended in the fluid, such as rust, debris, or solid contaminants, can settle and accumulate on heat exchanger surfaces over time, impeding heat transfer.

Corrosion:

Corrosive reactions within the fluid can lead to the formation of corrosion products, which can deposit on heat exchanger surfaces. It occurs when the metal surfaces of the exchanger are exposed to corrosive substances, such as oxygen, acids, or chemicals in the fluid being processed. Corrosion can weaken the metal and create rough surfaces that promote further fouling. Corrosion is often intensified by factors like elevated temperatures, the presence of impurities, or inappropriate material selection.

Organic/Biological fouling:

Organic matter, such as algae, biofilms, slime layers, fungi, bacteria, or oil residues, can adhere to the heat exchanger surfaces. These deposits promote further microbial growth, resulting in biofouling and additional heat transfer limitations. Biological fouling is common in cooling water systems, especially those exposed to natural water sources.

Particulate fouling:

Particles suspended in the fluid can deposit on the heat exchanger surfaces and form a layer of fouling. These particles can include dust, dirt, rust, sediment, or other solid contaminants present in the fluid. Particulate fouling can reduce heat transfer and increase pressure drop across the exchanger.

Chemical fouling:

Chemical reactions can result in the formation of unwanted deposits on the heat exchanger surfaces. For example, reactions between certain chemicals or fluids can produce solids that deposit on the heat transfer surfaces over time.

Soot fouling:

Soot is a byproduct of incomplete combustion in systems that burn fossil fuels. It can accumulate on heat transfer surfaces, especially in boilers, furnaces, or exhaust gas heat exchangers. Soot fouling reduces heat transfer efficiency and increases the risk of equipment malfunction.

Asphaltene fouling:

Asphaltene fouling occurs when heavy hydrocarbons, known as asphaltenes, present in crude oil or petroleum-based fluids, precipitate and deposit on heat exchanger surfaces. This type of fouling is common in oil refining and can lead to significant operational issues and reduced throughput.

Ice fouling:

In certain applications, such as refrigeration or air conditioning systems, the presence of moisture can lead to the formation of ice on heat exchanger surfaces. Ice fouling reduces heat transfer efficiency and increases energy consumption.

Polymerization fouling:

Polymerization fouling occurs when certain organic compounds in the fluid being processed undergo polymerization reactions and form sticky or solid deposits on heat transfer surfaces. This type of fouling is commonly observed in chemical processing industries.

Foaming fouling:

Foaming can occur when surfactants or substances that promote the formation of bubbles are present in the fluid. Foaming can lead to the accumulation of foam on heat exchanger surfaces, reducing heat transfer efficiency and increasing pressure drop.

Manganese dioxide fouling:

Manganese dioxide fouling is specific to systems that handle water containing manganese compounds. Under certain conditions, manganese dioxide can precipitate and form deposits on heat transfer surfaces, leading to reduced heat transfer efficiency.

Silica fouling:

Silica fouling occurs when dissolved silica in the fluid precipitates and forms deposits on heat exchanger surfaces. This type of fouling is common in systems that handle geothermal water or industrial process water with high silica content.

Magnetite fouling:

Magnetite fouling is observed in systems that handle water containing iron. The iron oxide compound, magnetite, can form deposits on heat exchanger surfaces, particularly in steam boilers or condensers, and reduce heat transfer efficiency.

Salt fouling:

Salt fouling occurs when salt-containing solutions or brines are heated or cooled, causing salts to precipitate and deposit on heat exchanger surfaces. This type of fouling is often encountered in desalination plants or systems that handle saline solutions.

Example of Fouling in Heat Exchanger
Fig. 1: Example of Fouling in Heat Exchanger

Consequences of Heat Exchanger Fouling

The presence of fouling in heat exchangers can have significant adverse effects on their performance and overall energy efficiency:

Reduced Heat Transfer Efficiency:

Fouling layers act as insulating barriers, impeding heat flow between the fluids. This reduces the overall heat transfer coefficient, requiring higher temperature differences or increased pumping power to maintain the desired heat exchange.

Increased Energy Consumption:

As fouling impedes heat transfer, the heat exchanger must compensate by operating at higher temperatures or increasing the fluid flow rates. These adjustments lead to increased energy consumption, resulting in higher operational costs.

Decreased Equipment Reliability:

Fouling can lead to localized hotspots, which may result in thermal stress, corrosion, or mechanical failures in the heat exchanger. These issues can disrupt operations, necessitating maintenance, and repair, thereby increasing downtime and costs.

Environmental Implications:

Higher energy consumption due to fouling indirectly contributes to increased carbon emissions and environmental impact. Addressing fouling-related inefficiencies can lead to reduced energy consumption and a more sustainable operation.

Mitigation Strategies for Heat Exchanger Fouling

To mitigate the adverse effects of fouling and maintain optimal heat exchanger performance, various preventive and remedial measures can be implemented:

Regular Maintenance:

Scheduled cleaning, inspection, and maintenance routines can help identify and remove fouling deposits before they significantly impact performance.

Fluid Treatment:

Implementing appropriate water treatment methods, such as filtration, softening, or chemical additives, can minimize scaling, sedimentation, and corrosion.

Heat Exchanger Design:

Optimal heat exchanger design can help minimize fouling tendencies. Considerations include selecting appropriate materials, optimizing flow velocities, incorporating turbulators or enhanced surfaces, and employing effective distribution systems to prevent stagnant zones.

Fouling Monitoring and Control:

Installing fouling monitoring sensors or devices can provide real-time data on fouling rates and enable proactive measures. Automated control systems can adjust operating parameters based on fouling conditions to maintain efficiency.

Mechanical Cleaning:

When fouling becomes significant, mechanical cleaning methods such as brushing, scraping, or high-pressure water jets can be employed to remove deposits. However, care must be taken to avoid damaging the heat exchanger surfaces.

Chemical Cleaning:

Chemical cleaning involves the use of specialized cleaning agents to dissolve or loosen fouling deposits. Acidic, alkaline, or chelating agents may be utilized depending on the type of fouling. Proper safety protocols and environmental considerations must be followed during chemical cleaning processes.

Advanced Technologies:

Innovative technologies like ultrasonic cleaning, pulsed power systems, or electromagnetic fields are being explored to enhance fouling control and removal efficiency.

Education and Training:

Promoting awareness and providing training to personnel regarding heat exchanger fouling, its causes, and preventive measures can contribute to better operational practices and early detection of fouling issues.

Conclusion

Heat exchanger fouling poses a significant challenge to the energy efficiency and reliability of industrial processes. Understanding the causes, consequences, and mitigation strategies is crucial for maintaining optimal heat exchanger performance and minimizing energy consumption. By implementing preventive measures, employing suitable cleaning techniques, and leveraging advanced technologies, industries can effectively combat fouling, reduce operational costs, and contribute to a more sustainable future. Regular monitoring, maintenance, and continuous improvement practices will play a vital role in maximizing the efficiency and longevity of heat exchangers, enabling industries to meet their energy efficiency goals while minimizing environmental impact.

Heat Exchanger Tube Plugging: Types of Plugs and Plugging Steps

The concept of “PLUGGING” heat exchanger tubes refers to the intentional blocking or sealing of individual tubes within a heat exchanger. To seal heat exchanger tubes, heat exchanger tube plugs are a convenient way. The plug usually consists of a cylindrical ductile material that is inserted into the open end of the tube at the tube sheet. It also has one or more resilient seal rings and a longitudinally extending blind central opening in the body.

Heat exchangers are devices designed to transfer heat between two fluids, typically a hot fluid and a cold fluid, without allowing them to mix. The tubes within a heat exchanger provide a pathway for the fluids to flow through, allowing heat transfer to occur.

Reasons for Plugging Heat Exchanger Tubes

Plugging tubes in a heat exchanger is done for various reasons, including:

Tube Maintenance: 

Over time, tubes in a heat exchanger may develop leaks, corrosion, or other defects. Plugging these tubes prevents the affected fluid from mixing with the other fluid, ensuring the continued operation of the heat exchanger while the damaged tube is repaired or replaced. Tube plugging is sometimes done in thin wall thickness areas.

Performance Optimization: 

In some cases, it may be necessary to adjust the flow distribution within a heat exchanger to optimize its performance. By selectively plugging certain tubes, the flow rate and pressure drop of the fluids can be manipulated to achieve better heat transfer characteristics or address uneven fluid distribution issues.

Process Changes: 

When there are changes in the process requirements, such as modifications in fluid properties or flow rates, plugging tubes can help adapt the heat exchanger to new conditions. By altering the flow path, heat transfer can be adjusted to meet the updated process requirements.

System Isolation: 

Plugging tubes can be used to isolate a section or segment of the heat exchanger. This may be necessary during maintenance, repairs, or when a particular part of the heat exchanger is no longer needed in the current operation.

Plugging tubes can be accomplished using various techniques, such as mechanical plugs, expansion plugs, or welding. The specific method used depends on the type of heat exchanger, tube material, and the reason for plugging. There are several types of plugs that can be used for plugging a leaking heat exchanger tube. The choice of plug depends on factors such as the type of heat exchanger, tube material, operating conditions, and the severity of the leakage.

Types of Plugs for Heat Exchanger Tube Plugging

Here are some common types of plugs used for tube plugging:

Tapered or Tapered Pin Plugs: 

These plugs are conical in shape and are inserted into the tube to create a tight seal. Tapered plugs are typically made of materials such as brass or stainless steel and are often used for low-pressure applications (preferably below 200 psi). When using tapered plugs, tubes need to be pierced before using them to prevent a plug blowout, posing a safety hazard.

Mechanical or Expandable Plugs: 

Mechanical plugs are designed to expand radially when inserted into the tube, creating a secure fit. They can be expanded using tools like wrenches or hydraulic pressure. These plugs come in various designs, including single-sized plugs, multi-sized plugs, and inflatable plugs.

Even though, they are commonly used for both low-pressure and high-pressure applications, the mechanical plug is ideal for plugging tubes exposed to an effective pressure of up to 7,000 psi and can withstand up to 2,000°F. For tubes exposed to higher temperatures and higher pressure, mechanical seals are ideal.

Welded Plugs: 

In cases where the leakage is severe or the tube cannot be effectively plugged using mechanical methods, welding can be used to permanently seal the tube. Welding involves closing off the tube ends or attaching a welded patch to cover the leaking area. This method is generally used for tubes made of materials suitable for welding, such as carbon steel or stainless steel.

Epoxy or Adhesive Plugs: 

Epoxy or adhesive plugs involve using specialized sealants or adhesives to seal the leaking tubes. These plugs are typically temporary solutions and are used when other methods are not immediately available. They are commonly employed for emergency repairs until more permanent measures can be implemented.

Rubber or Elastomeric Plugs: 

Rubber or elastomeric plugs are flexible plugs made of materials like rubber or silicone. They are inserted into the tube and expanded using a mechanical or hydraulic device to create a tight seal. These plugs are commonly used for temporary or low-pressure applications.

Threaded Plugs: 

Threaded plugs have external threads that match the internal threads of the heat exchanger tube. They are screwed into the tube to provide a secure seal. Threaded plugs are often made of materials like brass or stainless steel and are used for both low-pressure and high-pressure applications.

Friction Fit Plugs: 

Friction-fit plugs, also known as drive-fit plugs, rely on a tight fit between the plug and the tube to create a seal. These plugs are inserted into the tube with a hammer or a specialized tool. They are commonly used for temporary or low-pressure applications.

Heat-Shrink Plugs: 

Heat-shrink plugs are made of materials that shrink when heated. These plugs are inserted into the tube, and upon heating, they shrink and conform tightly to the inner surface of the tube, creating a seal. Heat-shrink plugs are often used for temporary or emergency repairs.

Composite or Wraparound Plugs: 

Composite or wraparound plugs consist of a combination of materials, such as metal and elastomer. These plugs wrap around the exterior of the tube and are secured in place to provide a seal. They are commonly used for temporary repairs or situations where accessing the tube interior is challenging.

Push-in or Snap-in Plugs: 

Push-in or snap-in plugs are designed for quick and easy installation. These plugs have a tapered or expanding design that allows them to be easily inserted into the tube without the need for additional tools. They are commonly used for temporary or low-pressure applications.

Types of Heat Exchanger Plugs
Fig. 1: Types of Heat Exchanger Plugs

Ring & Pin Plugs:

This is a two-piece styled plug. It consists of a bushing ring that sits inside the tube and a tapered pin plug. The plug is hammered in through the bushing. Additional secondary rings can be added to increase the sealing area of the plug.

It’s worth noting that the availability and suitability of these plug types may vary depending on factors such as the specific heat exchanger design, tube dimensions, and operating conditions. Therefore, it’s advisable to consult with experts or manufacturers who can provide guidance on the most appropriate plug type for your specific heat exchanger and leakage situation.

Steps for Effective Heat Exchanger Tube Plugging

The following steps are used to effectively plug leaking heat exchanger tubes.

Identification of the leaking tube: The first step is to identify tube leaks by inspecting for corrosion signs. A tube leak test gun can be used in this process. Once the leaking tube is found, isolate it from the other tubes in the heat exchanger.

Cleaning of the Tube: In the next step clean the heat exchanger tube where the plug will be installed. Remove any debris or corrosion that might be present.

Venting the tube before plugging: Tube venting is a process by which a small puncture is made inside of the tube, releasing any pressure or chemicals that may be trapped inside. This reduces the risk of deposits filling the leak path and causing a build-up of pressure.

Plugging the Tube: The tube now can be plugged. Depending on the type of heat exchanger plugs, the plugging method may differ slightly. The most common method is to use a mechanical plug which can be inserted into the tube and then expanded to create a seal.

Inspection: When the heat exchanger plug is in place, inspect the tube leaks. A pressure test on the heat exchanger is the most ideal way to do this. If no leak is found, the heat exchanger can be returned to service.

As a general rule, a maximum of 10% of the tubes can be plugged in one pass, if the surface area is designed to 110%. Otherwise, it is a better decision to replace all tubes.

Sometimes, during tube manufacturing some inherent pinhole defects are developed and not traced during hydro testing. At a later stage during usage, these pin holes give way by leaking. The scaling is also a serious problem in heat exchanger tubes due to the poor quality of cooling towers, in dusty environments. This could be somewhat controlled by side stream filters. The MIC in cooling towers is also a great reason for tube leakage.