Air Cooler Piping Design

Air Cooled Heat Exchangers are used in the plants to utilize the atmospheric air to cool the hydrocarbon, process and utility fluids by means of direct heat transfer from the fluid (within the tube) to be cooled by air circulated by means of forced/induced draft fan.

In Order to increase the heat transfer area, fins are also attached periphery of tubes. These heat exchangers are generally designed, inspected, and tested as per EN-ISO 13706.

The purpose of this article is to provide guidelines for the Piping Design/Layout connected to Air Cooled Heat Exchanger (Fig. 1) or Air Fin Fan Coolers. Click here to have a brief idea for Air Cooled Heat Exchangers.

Types of Air cooled Heat exchanger

There are three types of Air cooled heat exchanger

  • Forced Draft
  • Induced draft
  • Natural Draft (Used only for applications like transformer Oil Cooling)

Different type of Construction Air-cooled Heat exchanger

  • Single Pass Cooler
  • Multipass Cooler
  • U Tube Cooler
A typical Air Cooled Heat Exchanger
Fig. 1: A typical Air Cooled Heat Exchanger

Air Cooler Equipment layout Design

As this equipment needs a good flow of air for the purpose of better cooling, the location of the air fin fan cooler has to be such that it is not directly crowded or surrounded by other structures or equipment which blocks the path of plenty of airflows.

This static equipment is generally installed on the top of the pipe rack or other structure so that there is no difficulty or obstruction which can reduce proper airflow. Again by installing the air-cooled heat exchangers on top of the rack, huge space on the ground can be saved and the plant will become more compact.

Based on the width of the pipe rack or structure, normally the tube bundle length is fixed. Thus supporting legs of air cooler bundle comes on the main civil or structural beams, which simplifies the pipe rack design. At the same time, it is desirable to adjust the pipe rack or the structure longitudinal column spacing based on the width of the air cooler bundle such that bundle legs straight away sit on top of the columns. Sometimes, This may not be possible to adjust as each tube bundle might have varied width depending on service condition and adjusting pipe rack columns for different width may not be feasible from structural design and detailing point of view.

Walkways between two sets of air coolers are desired, which means if one cooler consists of ten bundles and other of five bundles then walkways have to be provided in between, after 10th bundle and before of next five bundles. This dimension of this walkway has to be a minimum of 1.5 to 2.0 m wide as this will be the only place at such elevation to keep tools and parts during maintenance.

The air Fin Fan coolers on the pipe rack shall be located in such a way that the bundles are accessible with a crane at least from one side.

Air Fin Fan coolers must have access platforms mounted on the air-cooled heat exchanger structure at least on the operating side.  An all-around platform is a better provision for maintenance.

Air Fin coolers have motors hanging at the bottom of the coolers. Hence, It is required to give access platforms underneath the cooler for maintenance of the motors. The localized platform can also be used.

A regular staircase needs to be provided for accessing the air fin cooler platforms or motor maintenance platforms.

Normally Inlet piping of air cooler requires a symmetrical distribution and loops. The piping needs to be supported so either air cooler structural columns or pipe rack structure columns need to be extended upwards to properly support the piping. Such data has to be given a very early stage in the project as this needs to be considered during pipe rack design.

If Air cooler is grade mounted then the area beneath the air cooler shall be paved to avoid the flow of sand/ dust on tubes.

Typical Layout of Air Cooled Heat Exchanger Piping
Fig. 2: Typical Layout of Air Cooled Heat Exchanger Piping

For two fans per bay, the height of the underside of the fan inlet bell (on forced draft units) or of the underside of the bundle (on induced draft units) shall be at least 2 m or one fan diameter (whichever is the greater) above the ground level, elevated floor or pipe bridge. For three or more fans per bay, the height of the underside of the bundle shall be agreed with the Principal.

Air Cooler Piping Design Considerations

The air coolers are normally used when a large quantity of vapor is required for condensation or a huge quantity of gas or liquid needs to be cooled. Such an application is common in the case of column overhead vapor condensation. The major points which need to be taken care while pipe routing or laying air fin cooler connected piping (Refer Fig. 2, Fig. 3, Fig. 4 and Fig. 5) are as follows:

From the center line of complete air cooler assembly, the piping distribution to the air cooler should be symmetrical.

If the supply line has very low pressure, care needs to be taken to keep no. of bends or elbows to a minimum. But functionality and stress requirements have to be considered. Line sizing during the distribution has to be proper if required the same has to be checked with the process or operations department.

Air Cooler Inlet Piping Arrangements
Fig. 3: Typical Air Cooler Inlet Piping Arrangements

The length of all branch pipes for all tube bundles from its header has to be more or less similar to keep pressure drop the same and this will ensure equal distribution of fluids to all bundles.

Normally inlet side header box is considered as fixed for piping connection and the other header is floating. But the bundle can move in the transverse direction of tubes = 6 mm or if it is fixed at one edge then it can move by 13 mm in the other direction (as per API 661). This displacement is required for piping header expansion compensation. However the same has to be checked with air cooler vendor as they may provide other displacement provisions.

Air Cooler Outlet Piping Arrangements
Fig. 4: Air Cooler Outlet Piping Arrangements

The movement of tube bundles in transverse direction could occur only when the piping connected to equipment nozzles generate enough force to overcome the friction at the bundle supports that is why it is a common practice to provide SS or PTFE plate at the support point (but this must be consulted with the vendor) to ease the movement.

The loads due to thermal expansion, pipe, insulation & fluid weight and an inside pressure of piping created on the bundle nozzle shall be less than the limits given by EN-ISO 13706. Sometimes vendor allows a more allowable load (normally 2 times of the code). So it is required to discuss the same with the vendor at the initial stage of the project.

Air Cooler Inlet and outlet Piping
Fig. 5: Typical Layout of Air Cooler Inlet and outlet Piping
Print Friendly, PDF & Email

Anup Kumar Dey

I am a Mechanical Engineer turned into a Piping Engineer. Currently, I work in a reputed MNC as a Senior Piping Stress Engineer. I am very much passionate about blogging and always tried to do unique things. This website is my first venture into the world of blogging with the aim of connecting with other piping engineers around the world.

4 thoughts on “Air Cooler Piping Design

  1. Dear Anoop,
    Since there are  different approaches in modelling air cooler would be very nice if you are sharing an article on air cooler piping analysis.

    1. hi this is Venkadesan from Saudi , brown filed shut down work, replacement of piping, there is AFC inlet sub header piping flange misalignment with nozzle, we proposed equipment alignment to avoid piping modification save time, my concern is there any impact in other side of outlet sub header nozzle with piping.

      please reply.

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent Content

Enable Notifications    Ok No thanks