Flare systems: Stress Analysis Points

Flare system is a means of safe disposal of waste gases by burning them under controlled conditions. Flare piping generally comprises of PSVs outlet piping, subheader piping & main header piping.

Design conditions considered for stress analysis are as per P&IDs, line list, and specific information related to flare if any by the process.   A typical flare system consists of:

  • PSV outlet pipes, subheader connected to main flare header, main flare header connected to knock out drum, the outlet of the flare knock out-drum to flare stack.
  • A knockout drum to remove and store condensable and entrained liquids.
  • Single or multiple burner units and a flare stack.
Typical Flare pipe with Knock out Drum
Fig. 1: Typical Flare pipe with Knock out Drum

The important points which a stress engineer should consider carefully are listed below:

Fluid Density of Flare Lines

The Fluid density has to be taken from the Line list (Process Department). However, density given in line designation tables (LDT) is normally very less. But different specification says to use an assumed liquid content while stress analysis of flare lines. For example, Shell DEP says to assume the following liquid content for stress analysis and support design load considerations.

Liquid Content Assumption for Flare Lines
Table: Liquid Content Assumption for Flare Lines

Pressure Test Method for Flare Lines

Flare lines are normally pneumatic tested. So, hydro test weight is not required to be considered during stress analysis. However, in specific cases, water-filled weight may be considered (Check with Process department).

Supporting of Flare Lines

Flare lines are normally provided with slopes as per Process requirements/ Project specifications. So general practice is to support with Shoe/saddle supports.  Supporting span to be maintained such as sustained sagging should not exceed 3 to 5 mm. The structure below pipe support/shoe height is to be planned to meet the piping sloping/free draining requirement.

Stress Intensification Factor or SIF consideration

Normal industry practice is to take 45 degree/90 degree branch connections from Flare Header: Proper SIF (both inplane and out plane) should be incorporated at branch connections while entering data into the analyzing software. SIF s can be calculated using Fe-SIF, Nozzle Pro, or some other type of FEA software. Sometimes reinforcement may be required to reduce SIF value. In absence of SIF values of 45 Degree Branch connections through FEA software, many organizations suggest a SIF value for 45° branch connection as 2.25 times the SIF values of 90° branch.

It is also to be noted that due to less design pressure, flare header thickness is normally less. And it may exceed the ASME B 31.3 limitation of D/t ratio within 100. Special analysis methods to be exercised for flare headers when the D/t ratio exceeds 100. Click here to know the applicability of Caesar II software for stress analysis when D/t exceeds 100.

Temperature Gradient

In a flare system sometimes temperature gradient or profile may exist when the hot contents flow into the subheader / main header which is at a lower temperature ( confirmation with the process if required ).

Also note that, minimum design temperature for flare headers are normally in the range of -50 Deg C. So there will be a wide difference between maximum and minimum design temperate. So decide loop locations early in the project stage.

PSV/PRV Reaction Force

There are many PSV/PRV that are connected to flare header. It is always a better practice to consider all the PSV systems in a single system along with flare header to get proper boundary condition for all PSV/PRV systems. The reaction force for those PSV/PRV’s need to be collected/calculated beforehand. It is preferable to add Rest+Guide+Line Stop in PSV outlet line and Hold down +Guide in PSV inlet line. Reaction force to be added considering one PSV/PRV is popping up and other is not popping.

Piping Flexibility

Piping shall be evaluated for flexibility. If necessary expansion loops shall be provided. Expansion joints to be avoided. Flare piping loops are planned in a horizontal plane (4D bends) in order to ensure pipe slope/free draining requirements. However, the number of loops should be minimized as much as possible.

  •  Flare line routing and supporting to be planned in such a way that forces and moments on flare knock out drum nozzle connections are minimized.
  • Sometimes Flare line may consist of two-phase flow. So Vibration/Acoustic analysis (AIV) is required to be performed and supporting to be strengthened.

Flare Stack and Knock Out Drum Nozzle Loads

Knock out drums are normal horizontal vessels and normally have high allowable nozzle load values. So there is no difficulty in qualifying these nozzles. But, Stack has less nozzle allowable loads. So pipe routing has to be sufficiently flexible to reduce the nozzle loads. Consult with Stack vendor at the initial stage and collect the allowable load values early to avoid major design changes at a later stage.

Few related articles for you.

Elevated Flare systems used in Process Industries
Routing Of Flare And Relief Valve Piping: An article
Pre-Commissioning and Commissioning Checklist for Flare Package
Job Opportunities for you

Print Friendly, PDF & Email

Anup Kumar Dey

I am a Mechanical Engineer turned into a Piping Engineer. Currently, I work in a reputed MNC as a Senior Piping Stress Engineer. I am very much passionate about blogging and always tried to do unique things. This website is my first venture into the world of blogging with the aim of connecting with other piping engineers around the world.

3 thoughts on “Flare systems: Stress Analysis Points

  1. How flare stack to be modeled? Are load cases different or any additional case? can we apply WRC ? if stack or drum failing? which PSV should be considered to be pop up? will solar radiation to be considered for piping?

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent Content

Enable Notifications    Ok No thanks