Recent Posts

What is Restrained and Unrestrained Pipes: Part 1

Start-Prof is a part of PASS software suite for piping stress analysis, hydraulics analysis, boiler & pressure vessel, heat exchanger, column, tank design & stress analysis is available worldwide since 2018.

Article consists of 2 parts:

  • Part 1. Unrestrained, Totally Restrained and Partially Restrained Pipes. Bourdon Effect
  • Part 2. Restrained and Unrestrained Zones in the Buried Pipelines. Interpretation of Strength Criteria in ASME B31.4 and B31.8

ASME B31.4 and B31.8 codes divide pipes into restrained and unrestrained. Which part of pipe is restrained and which is not? Many engineers have a misconception about this. We will explain the difference and suggest new universal strength criteria, which cover both restrained and unrestrained pipes.

Before we begin, let’s say that actually, there are three types of pipe behavior instead of two described in ASME B31.4 and B31.8 codes:

  • Unrestrained
  • Totally Restrained
  • Partially Restrained

Unrestrained Pipe

Pipe Expansion from Cap Pressure Thrust Load

Unrestrained pipe expansion from the pressure load consists of two parts. The first part is the expansion due to the pressure load on the end cap. The second part is pipe shortening due to Hook’s law.

Pipe expansion from the pressure load on the end cap is:

L – Pipe Length

E – Modulus of Elasticity

Pipe cross-section area is

D – Pipe Outer Diameter

t – Pipe Wall Thickness

N – Axial Force in the Pipe

Axial force N  is equal to the force acting on cap

P – Internal Pressure

Pipe expansion will be

Sh – Hoop Stress in the Pipe

According to Hooke’s law the axial deformation of the pipe under axial stress is:

v – Poisson’s Ratio

Pipe Shortening Under Internal Pressure

Pipe shortening due to internal pressure:

Total pipe expansion from pressure load is

If we add thermal expansion the equation will be:

 – Temperature Difference between Installation and Operation temperature

 – Coefficient of thermal expansion

Longitudinal stress caused by internal pressure is

If the left end is connected to pressure vessel nozzle or rotary equipment, then axial force in the equipment nozzle will be N as calculated above. But when equipment manufacturers calculate allowable loads, they assume that nozzle has end cap and vessel is under pressure. This means that axial stress caused by pressure is already included into allowable loads and should not be considered twice.

This means that we must exclude the pressure thrust load from axial force to calculate the support load that can be compared to allowable load on nozzle. To do this we must assume that pipe has two caps on the both ends. In this case the support load R  will be equal to internal force N minus thrust force on the end cap, i.e. zero

A strength criterion for unrestrained pipe is:

Sallow ‑ Allowable stress.

If we add here bending stress  and axial stress  from loads other than pressure, we get

If we want to add torsion stress, we should calculate equivalent stress:

Allowable stress value depends on the code. Usually it is Sh or 0.75Sy for sustained loads, kSh  or 0.9Sy for occasional loads, 0.9SySy for test state. Occasional load factor k=1.15…1.8 depends on selected code. Sy is yield stress, Sh – code allowable stress at operating temperature.

Thermal expansion has no effect on unrestrained piping systems, i.e. this equation usually used for sustained and occasional stress check in piping systems from pressure, weight and other force-based loads.

The code equations were created for manual calculation. But now most of pipe stress analysis software can consider Bourdon effect. This means that code equations should be modified to match the current level of technology.

If axial force N is calculated using software that considers Bourdon effect, then we should subtract PD/4t value from axial force otherwise it will be included twice:

The criteria for software analysis where M and N calculated with Bourdon effect should be just:

This has been already done in ASME B31.3 for Process Piping, GOST 32388 for Process Piping, GOST 55596 for District Heating Networks, SNiP 2.05.06-85 for Gas and Oil Pipelines, but still not fixed in all other ASME B31.X and EN 13480 codes.

Totally Restrained Pipe

For a restrained pipe with two anchors on both ends, thermal expansion should be zero

The axial force required to compress the pipe back to its original length can be calculated from this equation:

Therefore support load should be:

After substitution the thermal expansion equation we got final support load for restrained pipe:

The value of axial force can be obtained from the equilibrium conditions near the anchor. Axial force is equal to reaction in anchor minus the pressure thrust force that is received by anchor and doesn’t acting on the pipe:

Final equation for axial force in restrained pipe is

Axial stress in the restrained pipe will be

A strength criterion for totally restrained pipe is:

If we add here bending stress M/Z and axial stress N/A from loads other than pressure, we get

If we want also consider torsion and hoop stress, we should use the equivalent stress equations like described for unrestraint pipes.

If axial force  is calculated using software that considers Bourdon effect, then we should subtract pressure axial stress:

The criteria for software where M and N calculated with Bourdon effect and thermal expansion should be:

A criterion is the same as for unrestrained pipes, but allowable stress is usually 0.8Sy…1.0Sy to prevent the Yielding through all pipe length.

The maximum temperature difference for fully restrained pipe, ignoring longitudinal buckling effect, can be found by equation:

If pressure is zero, this value is about 80…110 C for steel pipes.

Partially Restrained Pipe

If we add flexible spring instead of rigid anchor on the right end of the pipe, we will get the third pipe condition – partially restrained.

We will pass the derivation of equations process and just show the final equations in table below.

The strength criteria for partially restrained pipes should be

  • From sustained primary loads:

  • From occasional primary loads

  • From both primary and secondary loads acting simultaneously

Primary Loads – are force driven not self-limiting loads like weight, pressure, relief valve thrust, wind, etc.

Secondary Loads – are displacement driven self-limiting loads like thermal expansion, anchor movements, support or soil settlement, etc.

Unrestrained and fully restrained pipe conditions can be easily calculated manually, but third condition require using of pipe stress analysis software, because spring stiffness k depends on connected pipes.

Bourdon Effect Model in PASS/Start-Prof

Now I will explain how PASS/Start-Prof software considers pressure Bourdon effect in arbitrary piping model. Start-Prof model the pressure loads consist of two parts.

Firstly, Start-Prof adds pressure thrust force  on each end of the pipe.

Secondly, Start-Prof adds axial deformation for each pipe. It equal to pipe thermal expansion minus pressure shortening.

The combination of these two loads allows to model correctly any type of piping: unrestrained, restrained, and partially restrained.

Bourdon effect makes a significant contribution to the support loads, displacements, and stresses for

  • High pressure piping
  • Plastic piping (PE, PP, PB, PVC)
  • FRP/GRP/GRE piping

Start-Prof always preforms analysis with Bourdon effect, it is non-disabling function.

Refer Part 2 for next part…..

10 Considerable Points for Pressure Vessel Nozzle Load Tables

Every EPC company must have project-specific pressure vessel nozzle loading tables which are used for comparing allowable nozzle loads for vessels, columns or towers, heat exchangers, Drums, or any similar type of equipment. Normally forces and moments at the nozzle and shell interconnection are provided in a tabular format. These force and moment values are decided based on the following major factors:

  • Nozzle diameter
  • Connected flange rating
  • Equipment and nozzle thicknesses.
  • RF Pad thickness if any
  • Equipment diameter, etc.  

Using these tables is quite simple. However, we must keep in mind a few points while using those tables. This article will list those important points for using these tables easily.  

1. Before checking the tables, find out the load and moment directional drawing from which we have to correlate the Caesar II axis.  

2. Each nozzle, including those designated “spare” but with the exception of man-holes and instrument nozzles shall be designed to withstand the forces and moments specified herein. The indicated loads are to be considered to act at the shell/head-to-nozzle intersection.  

3. For nozzles matching with any global direction (other than head nozzles) compare the values mentioned on the tables with global force values in CAESAR II output.  

Typical Pressure Vessel
Typical Pressure Vessel

4. For inclined nozzles in the horizontal plane (with respect to any global direction) there are 2 options as listed below.

  • Compare loads mentioned in the tables above with local element forces in CAESAR II output. In that case, the local X force will be a radial force and compare other directions to get proper forces.
  • Otherwise rotate the CAESAR II input model to match the nozzle axis with any global Caesar II axis and compare the loads and moments.

5. For Head nozzles (nozzle axis and equipment axis same direction) compare Mx and Mz as per   √[{(Mx)2+(Mz)2}]  ≤  √[{(ML)2+(MC)2}]  

6. In the case of any vessels in the packaged area, these values shall not be applicable and nozzle loading shall be coordinated with the vendor.  

7. In the case of any licensor / proprietary item, these values shall not be applicable and nozzle loading shall be confirmed by them.  

8. Allowable for self-reinforced nozzle shall be more than as mentioned in the above table. In that case, allowable shall be exercised from the vendor.  

9. For jacketed nozzles, loads are to be confirmed by the vendor.  

10. These tables are not applicable for checking loads at flange faces.  

Few more Resources for you..

A short Presentation on Basics of Pressure Vessels
Brief Explanation of Major Pressure Vessel Parts
A Presentation on VESSEL CLIPS or VESSEL CLEATS
Understanding Pressure and Temperature in the context of Pressure Vessel Design

Online Course on Pressure Vessels

If you wish to learn more about Pressure Vessels, their design, fabrication, installation, etc in depth, then the following online courses will surely help you:

AFT Impulse Pulsation Frequency Analysis (PFA) Module

This presentation is prepared by Mr. Deepak Sethia who is working in ImageGrafix Software FZCO, the Hexagon CAS Global Network Partner in the Middle East and Egypt. He has extensive experience in using Caesar II, PV Elite, AFT Impulse software, and troubleshooting. The points that will be covered in this article are:

  • Introduction
  • Natural Frequency and Resonance
  • Piping System Vibration and Resonance
  • PD Pump Pulsation
  • Overview of PFA for Impulse

Piping System Vibration and Resonance:

Piping systems can vibrate or resonate in two ways

– Through the pipe solid material

  • This is called “mechanical vibration”
  • If the vibration frequency is at the natural frequency it is called “mechanical resonance”

– Through the fluid inside the pipe

  • This is called “acoustic vibration
  • If the vibration frequency is at the natural frequency it is called “acoustic resonance”

PFA PROCESS IN AFT IMPULSE:

PFA Process:

Build the model

– This model represents the suction side of a system with two PD pumps (J8 & J9) in parallel fed by a centrifugal pump (J1)

– We will analyze the upper PD pump (J8)

Select Pulsation Setup from the Analysis menu

▪ This is where the “ring” will be defined

– Specify junction (only one in the system) and pulse start time

– The automatic magnitude of the strike will be twice the steady-state flow

Details of the PD pump are entered on the PD Pump Setup tab

– Used to generate the flow vs. time pump curve for the child pump scenarios

With everything defined we can view the flow pulse that will be used to “ring” the system

– Click Show Pulsation Graphs… in the lower-left corner

The pulse spike and the FFT of the pulse without filtering are shown in the first two tabs

Once the low-pass filter is applied (140 Hz in this case), the pulse spike is now a decaying sine wave

Evaluate Frequencies:

  • After running the model, go to the Graph Results window
  • Select the new Frequency tab
  • Select the pipe location(s) to analyze and click Generate
    • The spikes show the frequencies that excite the system at that location

Right-clicking on the annotation brings up a menu, allowing the user to Evaluate Excitation Frequency

For PD pumps, the speed (RPM) will be determined at that frequency for the harmonic multiples

– A red dot appears indicating the frequency is being evaluated

These scenarios have special properties since they are dependent on the configuration of the parent scenario

  • They are read-only so most of the model cannot be changed
    • They will be deleted when the parent is changed
    • They are named with the pump speed and frequency

Analysis:

When the model is run, there will be several blocks of time steps used to determine when the model reaches an equilibrium– This eliminates any artificial fluctuations caused by the PD pump flow, and leaves just the steady-state harmonics of the system

Graphical Report:

The frequency response graph can again be generated– Notice the spike occurs at the frequency of interest.

Output Report:

At the end of the run, the maximum peak-to-peak pressure levels are checked against the API-674 standard

– If the levels are OK there will be a confirmation

– A warning is given if there are locations that exceed the maximum set by the standard. It will list the location where the largest DP occurred.

Generate the Force file for CAESAR-II:

Elevated Flare systems used in Process Industries

What is an Elevated Flare System?

The elevated flare system consists of a flare header, a knock-out drum, and a flare stack. The waste gas and condensate are collected from the whole plant through the flare header and then the condensate is separated in the knock-out drum finally, the gas is burnt in a stack at a high elevation. As the combustion of gases (toxic) is done at the flare tip at a high elevation, the complete system is called Elevated Flare System.

Purpose of flare system

The primary function of a flare system is to use combustion to convert flammable, toxic, or corrosive vapors to less objectionable compounds like CO2.

Why not cold vent instead of flaring?

Methane is roughly 30 times more potent as a heat-trapping gas than CO2. Hence cold venting of HC gases is not allowed as per pollution control board directives.

Design standards for Flare System

  • API 521: Pressure-relieving and Depressuring  systems
  • DEP 80.45.10.10: Flare and vent systems (amendments to API 521)
  • API537: Flare details for refinery and petrochemical service
  • DEP 80.45.11.12: Flare details (amendments to API 537)

Types of Flares (Fig. 1)

  • Elevated flares: Commonly used in the oil and gas industry and the most economical.
  • Enclosed flares: Used in plants where a visible flame is not acceptable. Also used for offshore facilities.
    • Advantages: Low noise and radiation levels;
    • Disadvantage: Poor dispersion of gases during flameout condition (flare needs to be tripped on gas detection)
  • Ground flares: Used for liquid or two-phase relief flaring.
    • Advantages: Low radiation, low noise;
    • Disadvantage: accumulation of vapor cloud, high initial cost.
Types of Flares
Fig. 1: Types of Flares

Types of Elevated Flares (Fig. 2):

Self-supported stacks

Simplest and most economical design; Stack height up to 100 ft overall height; As the flare height and/or wind loading increases, the diameter and wall thickness required become very large and expensive.

Guy wire-supported stacks

Most economical design in the 100- to 350-ft height range. Normally, sets of 3 wires are anchored 120 degrees apart at various elevations.

Derrick supported stacks

The most feasible design for stack heights above 350 ft. Derrick supports can be fabricated from pipe (most common), angle iron, solid rods, or a combination of these materials. They sometimes are chosen over guy-wire-supported stacks when a limited footprint is desired.

Types of Elevated Flares
Fig. 2: Types of Elevated Flares

Non-Assisted / Assisted Flares:

  • Non-assisted flares are the flares that do not use any assist media and are typically used for hydrocarbon or vapor streams that do not cause smoking (i.e. For clean-burning gases like methane,  hydrogen, carbon monoxide, ammonia, hydrogen sulfide) or when smoke is not a  consideration.
  • The incomplete combustion of heavy HC gases produces Carbon monoxide, which is the main component to create smoke. For flaring heavy gases, a smokeless operation can be achieved by assisting media such as steam, air, or gas which improves the mixing of flare gas with air.
  • Steam-assisted flares (Fig. 3) for smokeless operation. Steam increases the momentum of flare gas which enhances fuel-air mixing leading to complete combustion. Also, the water-gas shift reaction converts CO to CO2

CO + H2O ⇌ CO2 + H2

  • Air-assisted flares (Fig. 3) are used where smokeless burning is required. It is used when steam is not available or where low-pressure air delivery offers a lower cost. (the only fraction of the requirement of air is mixed with flare gas to promote momentum which effectively entrains additional combustion air from the surrounding).
Steam Assisted and Air Assisted Flares
Fig. 3: Steam-Assisted and Air-Assisted Flares

Flare load estimation (Fig. 4)

Example of Flare Load Estimation
Fig. 4: Example of Flare Load Estimation
  • Fire zone: Wetted areas within a 300 m2 (3200 ft2) plot area shall be considered when a system’s relief loads are calculated.
  • Flare gas flow rate: Tip diameter is decided based on the design flow rate.
  • Mach number in Stack: 0.5
  • Mach number in tip: 0.5 to 0.8 (depends on allowable pressure drop)
  • Lower gas velocity (Fig. 5): When the gas flow is so low that the local gas velocity is less than flame velocity, air entrains into the flare tip leading to burning back / flashback. At very low gas velocities, the flame can travel back through the mixture (flashback) into piping and KOD.
Effect of Lower and Higher Gas Velocity
Fig. 5: Effect of Lower and Higher Gas Velocity
  • Higher gas velocity (Fig. 5): When the gas flow is higher than the design capacity, then the local gas velocity becomes higher than the flame velocity leading to detached flame or flameout (higher velocity leads to turbulence, which in turn reduces HC component concentration below LFL)
  • Flame velocity: The burning velocity or flame speed is the velocity at which a flame front moves through the unburnt gas/air mixture. This flame speed varies with the air/gas mixture ratio and the chemical makeup of the gas.
  • Purge gas requirement: To avoid air ingress down the flare stack purge gas is injected in the flare header. The injection rate should be controlled by a fixed orifice, rotameter, or other devices that ensure the supply remains constant and is not subject to instrument malfunction or maladjustment.
  • Purge reduction seals (Fig. 6): To reduce the purge rate purge reduction seals are used.

Liquid seal

The liquid seal drum shall be designed as a pressure vessel with a design pressure of at least 7 bar (100 psig) to maintain containment against internal deflagration.

Where there is a risk of an obstruction in the flare due to process flows creating an ice plug with the liquid seal, alternate sealing fluids such as a glycol/water mixture (60% EG & H2O freezing point –45 deg C) or other means to prevent freezing SHALL [PS] be implemented.

For LNG facilities, liquid seal drums shall not be used, since in the event of a cold release this may form an obstruction in the flare relief system.

Allowable Liquid droplet size (to avoid burning rain): Burning rain occurs when the rate of burning (depends on the type of flare) of liquid droplets is lower than the rate of settling of droplets (depends on droplet size).

Purge Reduction Seals
Fig. 6: Purge Reduction Seals

Drift distances of burning liquid droplets from an inadequately designed flare system can be considerably greater than 200 ft (60 m).

If the liquid is not drained from flare gas, at a gas velocity of 3-4 m/s – liquid droplets of 1000 microns can be entrained which can cause burning rain in the flare.

Liquid droplet size allowed without burning rain

  • Unassisted flares: <600 micrometer
  • Steam or air-assisted: <600 micrometers (less than 1% mass)
  • High pressure (if operated at least 200 kPag): <1000 micrometer (less  than 1% mass)

Flare Knock Out Drum (KOD)

Design pressure of KOD:

  • 5 barg (50 psig) when a liquid seal drum is located between the KO drum and a flare stack.
  • 7 barg (100 psig), if there is no liquid seal drum in the system.

For a multi-process unit facility (e.g., refinery) based flare KO drum where it may not be immediately clear which unit is sending liquid to the flare, liquid space on top of LA  (HH) SHALL [PS] be designed to contain the maximum emergency liquid relief rate from the largest single contingency for a period of at least 15 minutes for the unit KO drum and at least 20 minutes for the flare KO drum, without taking credit for pump out capacity.

Flare Height

The height of the flare (Fig. 7) is established based on allowable thermal radiation levels. Flare height depends on the available plot and the distance of nearby equipment from the flare stack.

  • More plot area: Low flare stack height
  • Less plot area: Higher flare stack height
Flare Height vs Available Plot Area
Fig. 7: Flare Height vs Available Plot Area

Thermal radiation:

The effect of thermal radiation on a person at grade or at an elevated platform shall be checked by radiation calculation.

Thermal Radiation affects human skin (skin burn).

Exposure Times Necessary to Reach the Pain Threshold

  • 31 kW/m2 – Up to 20 s
  • 15 kW/m2 – Up to 1 hour
  • 58 kW/m2 –  Continuous

If personnel exposure to radiant heat exceeds the guidelines provided, then shielding should be considered.

Depending on the location the thermal radiation limit is provided in Fig. 8

  • The solar radiation need not be added to calculated thermal radiation values (0.79 to 1.04 kW/m2) from the Flare.
  • A wind velocity of 10 m/s (22 mph) at the elevation of the flare tip, blowing towards the receiver, is a typical assumption for flame tilt assessment.
  • When two flares are located in close vicinity, combined radiation effects shall be calculated.
Thermal Radiation Limit
Fig. 8: Thermal Radiation Limit

Dispersion Analysis

To ensure safe operation during periods when the flame might have extinguished, the concentration of hazardous components should be determined using dispersion analyses, assuming the flare is functioning as a vent only.

Level of ConcernHydrogen Sulphide
(Concentration, Time)
Sulphur Dioxide
(Concentration, Time)
8 Hour TWA (Threshold Limit Value)5 ppm, 8 hours2 ppm, 8 hours
15 Minute STEL (Short-Term Exposure Limit)10 ppm, 15 minutes5 ppm, 15 minutes

Short-term exposure limits (STELs) are set to help prevent effects, such as eye irritation, which may occur following exposure for a few minutes

Smokeless requirement

Local rules and regulations shall be followed. Typically flare combustion quality shall meet Ringelmann Index 1 criteria (Fig. 9).

Smokeless flowrate shall be the normal flow that is expected in day-to-day operations. Do not specify the design capacity for smokeless operation.

A scale used to define levels of white, gray, and black i.e. intensity of smoke

  • Ringelmann No. 0 is clear smoke
  • Ringelmann No. 5 is 100 percent black.
  • Ringelmann No. 1 is equivalent to 20 percent black
Ringleman chart
Fig. 9: Ringleman chart

Other requirements

  • Noise: For normal flow rate (including starting-up and shutting-down): 85 dB(A) at the sterile radius. For emergency conditions: 115 dB(A) at sterile radius
  • Combustion efficiency: greater than 98%
  • The number of pilots (Fig. 10): The number of pilots required is a function of the flare burner diameter. For very small flares, a single pilot will reliably light the flare gas. However, it should be noted that if only a single pilot is used, a single pilot failure would represent a complete failure of the ignition system. Recommended installing at least 2 pilots for tip size of up to 8″ to increase reliability. As the flare burner diameter increases, the number of pilots required to reliably light the flare, regardless of wind direction, increases.
Number of Pilots
Fig. 10: Number of Pilots

Flare gas recovery system Safety considerations

  • Path to flare: PRVs, depressuring systems, etc., shall always have flow paths to the flare available at all times.
  • Reverse flow: Because flare gas recovery systems usually involve compressors that take their suction directly from the flare header, the potential for the reverse flow of air from the flare into the compressors at low flare gas loads shall be considered.
  • Monitor oxygen content in the flare header and provide recovery system trips. Provide a low-pressure trip on the recovery system suction to avoid air ingress. Liquid seal drum (not practical in AP flare systems)

Few more useful Resources for you…

Pre-Commissioning and Commissioning Checklist for Flare Package
Routing Of Flare And Relief Valve Piping: An article-Part 1
Flare systems: Major thrust points for stress analysis
Stress Analysis of PSV connected Piping Systems Using Caesar II
Articles related to Process Design
Piping Layout and Design Basics
Piping Stress Analysis Basics

Tutorial: API 610 module of Caesar II software

All Piping stress engineers who use Intergraph’s Caesar II software must be aware that there is an inbuilt API 610 module for API centrifugal pump nozzle load checking. By the use of this module, you can directly check if the pump nozzle loads are within acceptable limits provided by the API 610 code. Searching the code for allowable load or asking the vendor for the nozzle limiting force and moments are not required.

The method of using the API 610 module is fairly simple. But before you start using the module you have to perform static analysis following conventional methods. In this video tutorial, the API 610 module is explained clearly.

Types of Pressure-Relieving Devices for Protection from Overpressure

Pressure Relieving Devices or PRDs are devices used in chemical, petrochemical, and power industries to prevent equipment from over-pressurization. As per the design requirements, these pressure-relieving devices function to relieve excess pressure generated in the system. PRDs are widely used for gas, steam, vapor, or liquid services. To protect operating personnel and equipment from unforeseen adverse impacts, pressure-relieving devices play an important role.

Pressure-relieving devices protect a vessel or item of equipment against overpressure and not against failure due to high temperature when exposed to fire, or failure due to corrosion. Safety in connection with such failures must be considered independently.

Types of Pressure-Relieving Devices

Various types of relieving devices used in process plants are as follows:

In the following paragraphs, we will learn about these pressure-relieving devices in brief

A. Pressure Relief Valve:

A pressure relief device actuated by inlet static pressure and designed to reclose and prevent the further flow of fluid after normal conditions have been restored.

The pressure relief valve is a generic term applied to relief valves, safety valves, safety relief valves, or pilot-operated pressure relief valves. A short Description of these valves is given at the end of this article.

B. Non-Reclosing Pressure Relief Device:

A pressure relief device designed to remain open after operation.

C. Safety Valve:

A safety valve is a pressure relief valve characterized by rapid opening or pop action. It is used for gas or vapor service.

D. Relief Valve:

A relief valve is a pressure relief valve, which opens in proportion to the increase in pressure over the opening pressure. Relief valves are generally used for liquids. In this type of valve, at the set pressure, the disk rises slightly from the seat without popping and permits a small amount of fluid to pass. As the pressure in the vessel increases, the disk is further raised; thus an additional area is available so as to allow an increased flow of fluid.

E. Safety Relief Valve:

A safety relief valve is a pressure relief valve that can be used in either vapor or liquid service. For vapor service, it is adjusted to give a “pop” action, for liquid service it is adjusted for gradual opening.

F. Pilot Operated Pressure Relief Valve:

This is a pressure relief valve in which the major relieving device is combined with and is controlled by a self-actuated auxiliary pressure relief valve (pilot). The use of pilot-operated pressure relief valves may be limited by the fluid characteristics (fouling, viscosity, presence of solids, corrosiveness) or by the operating temperature. The manufacturer should then be consulted.

G. Pilot-Assisted Pressure Relief Valve:

This pressure relief valve is a standard pressure relief valve (spring-loaded) fitted with an additional spring-diaphragm actuator to which a pneumatic signal is fed from a pressure-sensing pilot. The arrangement connecting the actuator to the spindle is such that the valve is still capable of operating as a standard safety valve in the event of pilot or actuator failure. The pressure relief valve will then open at 105 % of the set pressure as the valve spring set pressure is normally adjusted to 5 % higher than the pilot set pressure.

H. Power-Actuated Pressure Relieving Valve:

Movements to open or close are fully controlled by an external source of power (electricity, air, steam, or hydraulic). If the powder-actuated pressure-relieving valve is also positioned in response to other control signals, the control impulse to prevent over-pressure shall be responsive only to pressure and shall override any other control function.

It has to be noted that the power-actuated pressure relieving valve cannot be considered a safety device, since, unlike the others, it relies on an external source of power.

I. Rupture Disk Device:

A non-reclosing differential pressure relief device actuated by inlet static pressure and designed to function by the bursting of a pressure-containing disk. A rupture disk device includes the rupture disk or sensitive element and the rupture disk holder. Rupture disk devices are used either alone or in conjunction with a pressure relief valve. The application of rupture disks alone is limited by the fact that when the disk ruptures the entire contents of the system may be lost. They may, however, be installed in parallel with a pressure relief valve to provide the additional capacity; in this case, the relief valve is set at a lower pressure to limit rupture disk bursting to major disasters.

Rupture disks are pressure differential devices and the relieving capacity is therefore affected by the sizes and lengths of the inlet and outlet pipework.

J. Breaking Pin Devices and Spring-Loaded Non-Reclosing Pressure Relief Devices:

A breaking pin device is a non-reclosing pressure relief device actuated by inlet static pressure and designed to function by the breakage of a load-carrying section of a pin that supports a pressure-containing member. A breaking pin device includes the breaking pin or load-carrying element and the breaking pin housing. Breaking pin devices shall not be used as single devices but only in combination between the pressure relief valve and the vessel.

A spring-loaded non-reclosing pressure relief device is a pressure-actuated by means which permit the spring-loaded portion of the device to open at the specified set pressure and remain open until manually reset. It may be used provided the design of the spring-loaded non-reclosing device is such that if the actuating means fail, the device will achieve full opening at or below its set pressure. Such a device may not be used in combination with any other pressure relief device.

K. Explosion Hatch:

A hinged metal cover is placed over an opening in a vessel. The hatch consists of a hinged metal cover placed over an opening. It is used for vessels operating near atmospheric pressure and when the risk of explosion exists. Explosion hatches are not recommended for use at higher pressures, since the weight of the hatch will be excessive and this may prevent quick opening.

L. Liquid Seal:  

Liquid seals can be used instead of pressure relief valves for set pressures below 10-15 psig, where relief valves are not considered reliable. Typical examples are the seal leg of a flare and liquid seals used in MEK units to protect the filters. The “U-tube” may be filled with water, mercury, or other liquid. Freezing of the sealing liquid shall be avoided by steam tracing or heating. Provisions for make-up and draining of the filling liquid should be made.

M. Vacuum Relieving Devices:

A vacuum can be the normal operating conditions of a vessel (e.g. Vacuum Towers) or an occasional event for vessels normally operating under pressure. This can happen due to internal vapor or steam condensation, pumping out, gravity transfer of liquids, loss of heating and temperature changes, etc.

In the first case, the vessel is designed to withstand a full vacuum. In the second case, the designer can choose between specifying the vessel for full vacuum or providing a vacuum relief device (valve or liquid seal) that permits the entrance of air, inert gas, or fuel gas, etc., to prevent vacuum conditions.

It is important to specify the actual temperature coincident with occasional vacuum conditions. This temperature may be appreciably lower than the normal operating temperature. Based on the pressure/temperature level when the occasional condition occurs, vessel specialists will check the wall thickness required, which may not have to be increased due to the lower temperature coincident with vacuum conditions.

N. “O Ring” Seat Seal or Stellited Pressure Relief Valve: 

Pressure relief valves may leak when the operating pressure is above 90 % of the valve set pressure. It is possible to enhance the tightness of a spring-loaded pressure relief valve for max operating pressure up to 92 % of set pressure (above 92 % consider pilot-operated pressure relief valves), either with :

  • an “O ring” seat seal; the compatibility of this seal with the product has to be carefully investigated,
  • a stellited pressure relief valve.

Short descriptions of Safety valves and safety Relief Valves are given here.

Safety Valves and Safety-Relief Valves:

These are pressure-relieving devices for gases or vapors which have been specifically designed to give full opening with little over-pressure. The kinetic energy of relieving gas or vapor creates a pop action that opens the disk rapidly, reaching the full lift before maximum overpressure. There are two basic types of safety valves: conventional and balanced valves.

Conventional Type Relief Valve

Conventional relieving valves are shown schematically in Fig. 1. The following two situations are possible :

  1. If the bonnet is vented to the atmosphere, the backpressure acts with the vessel pressure against the spring force.
  2. If the spring bonnet is vented to the valve discharge rather than to the atmosphere, the backpressure acts with the spring force.

If the superimposed backpressure were constant, (no matter what its value), it could be taken into account in adjusting the spring loading so that the relief valve would open at the required set pressure. In practice, however, the superimposed back pressure is generally not constant and varies between a minimum, which corresponds to the flow of purge gas alone in the flare system (no valve discharging), and a maximum which corresponds to the design flow of the flare system.

Conventional Pressure Relief Valve
Fig. 1: Conventional Pressure Relief Valve

For a conventional valve of type B, the ‘spring’ set pressure is equal to the design pressure minus superimposed back pressure; therefore the valve will open above the vessel design pressure if the superimposed back pressure is higher than expected, and will open below design pressure if the superimposed back pressure is lower than expected.

In order to avoid opening the valve at pressures too different from the required set value (as a result of variable superimposed back pressure), the first step is to only accept the use of conventional relieving valves when superimposed back pressure varies over a range not exceeding 10% of set pressure (gauge). However, this is not always sufficient because the flow performance after opening must also be examined. When the valve is open, the built-up backpressure tends to unbalance the equilibrium between spring force and vessel pressure. For a conventional valve of type B, this may result in a reduction of valve opening and a rapid fall of capacity (see Fig. 2). Therefore conventional valves, even when acceptable from the point of view of superimposed backpressure, must be checked with regard to built-up backpressure. The designer must check that the difference between the maximum value of backpressure and the minimum value of superimposed back pressure does not exceed 10% of the set pressure (gauge).

Back Pressure vs capacity of Conventional Pressure relief Valve
Fig. 2: Back Pressure vs capacity of Conventional Pressure relief Valve

Balanced Type Pressure Relief Valve

Balanced safety relief valves are those in which the back pressure has little influence on the performance characteristics.

Piston type and Bellows type are available, the latter being more widely used (See Fig. 3).

Bellows Type Pressure Relief Valve-

The effective bellows cross-sectional area is equal to the nozzle seat area; disk areas extending beyond the bellows and beyond the seating area are equal and forces developed over those areas cancel each other.

The area under the bellows is kept under constant pressure by venting the bellows to a source of constant pressure, which is often the atmosphere unless the fluid that would be vented in case of bellows failure is dangerous; in that case, the vent should be discharged to a safe location, provided that its pressure is constant. Bellows valves have limited allowable set and outlet pressures. 

If the maximum set or backpressure allowed for a single orifice appears too low, use a combination of smaller valves having an aggregate area equal to the valve in question. The use of smaller valves will permit higher set or back pressures.

Piston Type Pressure Relief valve-

In the piston type, of which several variations are manufactured, the piston guide is vented so that the back pressure on opposing faces of the valve disk cancels itself, and the top face of the piston, which has the same area as the nozzle seat area, is kept at atmospheric pressure by venting the bonnet.

Since gases may leak past the piston to the bonnet, the bonnet of piston-type valves must be vented in a safe manner.

Note that the vent on the valve bonnet should not be piped back into the flare header as its performance will then be the same as a conventional valve.

With balanced-type relieving devices, not subject to the limitations of back pressure set for conventional devices, the back pressure (superimposed and built-up) can be allowed to rise, permitting a reduction in size and cost of the relief header.

However, even when using balanced-type valves, when back pressure reaches 30% of the set pressure, the capacity of the valve for vapors and gases starts to fall below the theoretical capacity. With liquids, the capacity reduction starts at 15% of the set pressure. The fall-off in valve capacity depends also on overpressure, type, and make of valve used

For back pressures higher than this limit, valve size becomes progressively larger for the same flow, even if critical flow conditions are maintained. For back pressures higher than 50% of the set pressure, the valve manufacturer must always be consulted for valve sizing. In general, although there would be an incentive in increasing back pressure with balanced-type valves in order to reduce the size and cost of relief headers, values exceeding 30-35% of set pressure (gauge) should not be used without checking with an instrument specialist.

Balanced Pressure relief Valve
Fig. 3: Balanced Pressure Relief Valve